STRUCTURE AND PROPERTIES OF TETRAPROPYLAMMONIUM PERTECHNETATE AND PERRHENATE <u>M. S. Grigoriev</u>¹, K. E. German¹, C. Den Auwer², J.-P. Dancausse², M. Masson², M. Simonoff³

¹Institute of Physical Chemistry of RAS, Moscow, Russia ²CEN VALRHO/CEA, Marcoule, France

³UMR 5084 - Chimie Nucléaire Analytique et Bioenvironnementale, Le Haut Vigneau, Gradignan, France

TcO₂, Tc₂S₇ or NH₄TcO₄ were first compounds proposed to prepare technetium precipitate before its conversion into metal. In this work we have tested tetrapropylammonium (Pr₄N⁺) salts as providing the waste which could be easily incinerated. Pr₄NTcO₄ was firstly prepared by Roberts [1], who reported its solubility in water as $7.8 \cdot 10^{-3}$ M. These measurements were extended for acidic and alkaline media in [2], together with some preliminary studies of thermal properties of (C_nH_{2n+1})₄NXO₄ (X = Tc, Re) and methods of their conversion into metals. Here we present solubility, structural and thermal behaviour data for Pr₄NXO₄ (X = Tc, Re). Starting NH₄⁹⁹TcO₄ was supplied by VO "ISOTOPE", Russia. Derivatograph Q1500 (Hungary) and an original thermo-balance were used for the TGA and DTA. For solubility measurements we used β-scintillation relative counting of ⁹⁹Tc at Beckman-5000 in K-free vials and GL scintillation cocktail for Tc and ICP/AES measurements at "Plasma 400" Perkin Elmer spectrometer for Re.

For all of the $(C_nH_{2n+1})_4NXO_4$ where n = 1, 2, 4 Tc and Re salts were isostructural [3]. Therefore, in "cold tests", Pr_4NReO_4 was synthesized and characterized by X-ray diffraction. The X-ray single crystal structural investigation of Pr_4NReO_4 was carried out at $-120^{\circ}C$ (Nonius Kappa CCD diffractometer, $\lambda MoK\alpha$, graphite monochromator). Crystal data: orthorhombic, space group $Pna2_1$, Z = 4, a = 13.169(2), b = 12.311(2), c = 10.107(1) Å; R(F) = 0.0191, $R_w(F^2) = 0.0461$. The Re-O distances are 1.677(12), 1.704(5), 1.719(4) and 1.739(11) Å. Every anion in this structure has four cation neighbours with Re...N distances from 5.06 to 5.34 Å (Fig. 1). Thermal expansion of Pr_4NReO_4 in the range $-120^{\circ}C - 0^{\circ}C$ is monotonic, showing no phase transitions (Fig. 2). The linear expansion coefficients are $7.37(18) \cdot 10^{-5}$, $1.040(8) \cdot 10^{-4}$ and $3.02(11) \cdot 10^{-5} \, ^{\circ}C^{-1}$ for *a*, *b* and *c* directions, respectively. Anisotropic character of thermal expansion can be explained by the packing of the ions in the crystal structure: it is seen in Fig. 1, that two of the four short contacts between anions and cations are in *c* direction, that with the lowest thermal expansion coefficient.

The temperatures of phase transitions in Pr_4NReO_4 (Fig. 3) are listed below. Similar phases were identified for Pr_4NTcO_4 by DTA measurements 25 - 179°C (α), 180 - 195°C (β),

195 - 234°C (γ), 234 - 280°C (liquid), indicating that Pr₄NTcO₄ and Pr₄NReO₄ are isostructural. Powder diffraction patterns of Pr₄NReO₄ at 175°C (intermediate β -phase) and 200°C (high temperature γ -phase) have been indexed using CRYSFIRE indexing suite [4]. The intermediate phase can be indexed as tetragonal with a = 12.271(13), c = 10.823(7) Å (possible space group $P4_2/n$). The high temperature phase is hexagonal with a = 9.749(3), c = 11.654(2) Å (possible space group $P6_3/mmc$).

Fig. 1. Unit cell of Pr₄NReO₄ structure. Heavy dashed lines show short Re...N distances.

Fig. 2. Temperature dependence of unit cell constants for Pr₄NReO₄.

Fig. 3. Thermal phase transitions in Pr_4NReO_4 . Stability intervals as determined by X-ray/DTA, °C: α [-120 – 171/186], β [171 – 185/199], γ [185 – 426], liquid [246 – 296].

For solubility measurements the suspensions of each salt in the corresponding electrolyte solution were equilibrated till no changes in radioactivity of solution could be detected. The influence of [HNO₃], as well as of [Pr₄NOH] on the solubility was determined (Fig. 4). Solubility of Pr₄NTcO₄ is approximated as: [Pr₄NTcO₄]_{aq} = $0.063/[Pr_4N^+] + 0.8628$ (R² = 0.98). Solubility product SP(Pr₄NTcO₄) = $0.000193 \text{ M}^2/\text{L}^2$. Association constant K₁ of

 $(Pr_4N^+)...(TcO_4^-)$ in water and Pr_4NOH solutions is $K_1 = 2.6 \pm 0.4$ L/M. The solubility of Pr_4NTcO_4 practically does not depend on the ionic forth of the solution but increases with the acidity of the solution in the same manner as it was shown earlier for Bu_4TcO_4 [5].

Fig. 4. Solubility of Pr₄NTcO₄ and Bu₄TcO₄ in R₄NOH (left) and HNO₃ (right).

Simulated RW solutions for precipitation studies contained $(2.0 - 7.5) \cdot 10^{-2}$ M/L Tc in (3 - 4) M/L HNO₃, $(2.0 - 7.5) \cdot 10^{-8}$ M/L ²³⁹PuO₂(NO₃)₂ and 5.7 µCi/L ¹⁰⁶Ru(NO)(NO₃)₃. These solutions were denitrificated to (1-1.2) M HNO₃ with HCOOH. In some runs control treatment with 0.2 M H₂O₂ at 60°C gave no change in [Tc] indicating that Tc(VII) is present constantly. Tc was precipitated in form of Pr₄NTcO₄ by titration with 0.98 M Pr₄NOH. Decontamination factors from ²³⁹Pu and ¹⁰⁶Ru were $(0.5 - 1.5) \cdot 10^{-2}$ and $(6.0 - 7.5) \cdot 10^{-2}$ correspondingly. Tc yield varied within 70 – 85 % which was less than in case of Bu₄NTcO₄ [5]. Additional Tc recovery was possible with Re as carrier similar to [6].

The thermal properties of Pr_4NTcO_4 and Pr_4NReO_4 were tested by DTA/DTG. Both compounds decompose into technetium carbide or metal by thermal decomposition in argon or (argon + 6% hydrogen gas mixture) correspondingly. The gaseous products were eliminated with gas carrier and analyzed by mass spectrometry indicating presence of H₂O, CO_2 , Pr_3N and small amounts of other products due to partial oxidative destruction of cation.

REFERENCES

- 1. Roberts F.P. Battelle-Northwest BNWL B 49. Battelle-Northwest Lab., Richland, WA (1971).
- 2. Guerman K.E., Masson M., Dancausse J.-P. Note technique NT SPHA/00/07. CEA/VALRHO Marcoule, Juin 2000, 76 p.
- 3. German K.E. Ph.D. Thesis. IPC Ac. Sci. USSR, 1989.
- 4. Shirley R. (2000), *The CRYSFIRE System for Automatic Powder Indexing: User's Manual*, The Lattice Press, 41 Guildford Park Avenue, Guildford, Surrey GU2 7NL, England.
- 5. German K., Kryutchkov S. et al. J. Radioanal. Nucl. Chem. Articles. 1988. V.121. No2. P.515-521.
- 6. Peretrukhin V., Silin V. et al. Final Report PNNL 11988 UC 2030, 1998, Richland, WA.