COMPARATIVE INVESTIGATION OF THE AQUEOUS TECHNETIUM-TRICARBONYL IN DIFFERENT CHROMATOGRAPHIC SYSTEMS

A. Inkin*, G. Kodina*, <u>A. Malysheva</u>*, M. Khasina*, D. Suglobov**, N. Gorshkov**

* State Scientific Center - Institute of Biophysics, Moscow ** Khlopin Radium Institute, St.-Petersburg, Russia

Technetium-tricarbonyl is well known as one of the moiety for the preparation of the radiopharmaceutically acceptable compounds. Present paper deals with the comparative investigation of chromatographic behavior of $[Tc(CO)_3(H_2O)_3]^+$ and some of it complexes, which were prepared in aqueous solutions.

To prepare an aqueous solution of technetium-tricarbonyl we used two methods.

The method described by R. Alberto et al. [1]: 4.0 mg Na₂CO₃ , 5.5 mg NaBH₄ and 20mg KNa-tartrate were put together into a 10-ml vial, which was closed and flushed for 10 min with CO. 3 ml of an eluate from ^{99m}Tc generator was added and the solution was heated to 75 °C for 30 min. The authors recommended using for quality control the TLC on silica gel plates with methanol/conc.HCl (99:1) as a mobile phase. The Rf value is 0,4 for $[^{99m}Tc(CO)_3(H_2O)_3]^+$ (I) and 1,0 for $^{99m}TcO_4^-$.

The second method was one-stage direct carbonilation of pertechnetate ions (99 Tc or 99m Tc) with carbon monoxide gas in acidic aqueous solution (pH 0.5 - 1.0) at 160 - 180 0 C under pressure (12 - 15 MPa) [2,3]. TLC on silica gel plates in acetonitrile/acetic acid (5:1) was recommended for quality control. The R_f value is 0.6 for I and 1.0 for 99m TcO₄⁻.

 $[^{99}Tc(CO)_3(H_2O)_3]^+$ was used as a standard. This standard was prepared by the hydrolysis of $^{99}Tc(CO)_5Cl$ with the following identification of $[^{99}Tc(CO)_3(H_2O)_3]^+$ by NMR-spectroscopy.

To evaluate the radiochemical yield of the obtained complexes we used TLC on silica gel plates (Merck, 5554) in the following systems:

- acetonitrile : acetic acid 5:1 (A)
- methanol : conc.HCl 99:1 (B)
- 0.1 M acetic acid (C)

In each experiment the strip was cut after autoradiography and the activity of each piece was measured. The spot of $[^{99}Tc(CO)_3(H_2O)_3]^+$ was also detected in ultraviolet light using silica gel plates with fluorescent indicator (F₂₅₄).

After the chromatography of the standard solution in the system A we observed a small activity at the origin and blurring spot with R_f value 0.3 - 0.8 (see Fig., b). So we decided not to use this system.

On the chromatogram of the standard solution in the system B $[^{99}Tc(CO)_3(H_2O)_3]^+$ has the R_f value 0.4, but were also observed a small adsorption of activity from the origin up to a spot (see Fig., e).

The best results we obtained in the system C. The single compact spot was observed on the strip with R_f value 0.4 - 0.45 (see Fig., c). If we used silica gel plates of another firms (Kavalier, Sorbfil) the R_f value may be 0.5 or 0.6 (see Fig., d, h).

The analysis of aqueous alkaline solutions of I (volume activity 37 - 370 MBq/ml) was carried out in two systems - B and C. In the system B we observed the formation of I with the yield of about 40 % and about 20 % of activity was remained at the origin and at the solvent front. The great amount of activity presented the adsorption zone (30 - 35 %). In the system C the yield of I was 70 %, the impurities at the origin were about 10 % and about 20 % of the activity was at the spot that was corresponded to ^{99m}TcO₄⁻ (see Fig., g).

If we synthesized I in the presence of histidine (10^{-3} M) , in the system C we observed 80 % of I, less than 5 % at the origin and not more than 10 % in the form of $^{99\text{m}}\text{TcO}_4^-$ (see Fig., h).

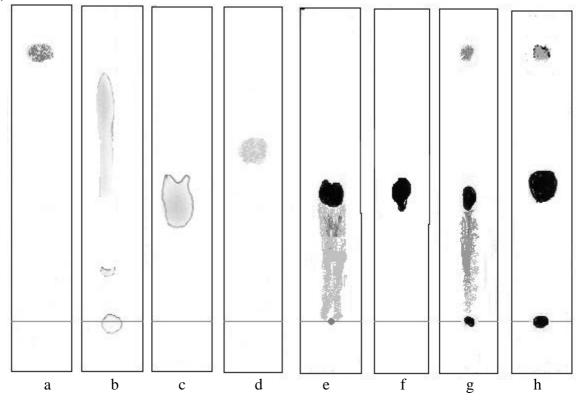


Fig. TLC chromatograms of ⁹⁹Tc and ^{99m}Tc-preparations.

- a) K⁹⁹TcO₄, silica gel plates, Merck 5554, in system A, B or C, detected in UV-light
- b) [⁹⁹Tc(CO)₃(H₂O)₃]⁺, silica gel plates, Merck 5554, in system A, detected in UV-light
- c) $[^{99}Tc(CO)_3(H_2O)_3]^+$, silica gel plates, Merck 5554, in system C, detected in UV-light
- d) $[^{99}Tc(CO)_3(H_2O)_3]^+$, silica gel plates, Sorbfil, in system C, detected in UV-light
- e) $[^{99}Tc(CO)_3(H_2O)_3]^+$, silica gel plates, Merck 5554, in system B, autoradiography
- f) $[^{99}Tc(CO)_3(H_2O)_3]^+$, silica gel plates, Merck 5554, in system C, autoradiography
- g) [^{99m}Tc(CO)₃(H₂O)₃]⁺, prepared using method [1], silica gel plates, Merck 5554, in system C, autoradiography
- h) $[^{99m}Tc(CO)_3(H_2O)_3]^+$, prepared using method [1] in the presence of histidine, silica gel plates, Kavalier, in system C, autoradiography

CONCLUSION:

- for the correct identification of the reaction products by TLC the combination of two chromatographic systems should be used;
- in 0.1 M acetic acid practically no adsorption takes place;
- one can observed the formation of hydrolyzed form and TcO_4 –ions in the alkaline solutions of the ^{99m}Tc-tricarbonyl.

REFERENCES

- 1. R.Alberto, R.Schible, Patent WO 98/48848 of 05.11.98, A61K 51/04.
- 2. N. Gorshkov, A.Lumpov, G.Miroslavov, D.Suglobov, Radiochemistry, 42, N 3, 2000, p. 213 217 (in Russian).
- 3. G. Miroslavov, N.Gorshkov, A. Lumpov et al., Proceedings of the Fifth International Symposium on Technetium in Chemistry and Nuclear Medicine, 1999, p. 321 - 324.

ACKNOLEDGEMENT: This work was supported by International Scientific Technical Center, Project N 1723.