ISTR 2014

La Baule – Pornichet, France 29th sept. – 3rd oct. 2014 8th International Symposium on Technetium and Rhenium: Science and Utilization. September 29th to October 3rd 2014. Proceedings and selected lectures. La Baule -Pornichet, France. Eds. K.German, F.Poineau, M. Fattahi., Ya. Obruchnikova, A. Safonov. Nantes – Moscow – Las Vegas : Granica Publishing Group, 2014. 561 p.

IPCE RAS 2014 SUBATEC 2014 GRANICA PUBLISHING GROUP 2014 UNLV 2014

UDK 546.718 : 548.736

ISBN 978-5-94691-703-2

Nantes - Moscow - Las Vegas

Granica Publishing Group - 2014

Table of Contents

Chemistry of Technetium in the nuclear fuel cycle	
Multiple Facets of Technetium and Rhenium Chemistry in Molecular Imaging and Therapy. Roger Alberto, Samer Ursillo, Henrik Braband, Michael Benz, Michael Felber, Sebastian Imstepf	10
Technétium behavior in the PUREX process. P. Baron	47
The role of a choice of the target form for ⁹⁹ Tc transmutation. A.A. Kozar', K.E. German, V.F. Peretrukhin	61
Complexation and extraction of Pu(IV) in the presence of pertechnetic acid. L. Venault, L. Abiad and Ph. Moisy	74
The ways of technetium localization at the SNF reprocessing. N.D. Goletsky, B.Ya. Zilberman, Yu.S. Fedorov, A.S. Kudinov, A.A. Timoshuk, L.V., Sytniuk, E.A. Puzikov, S.A. Rodionov, A.P. Krinitsyn, V.I. Ryasantsev, D.V. Ryabkov, T.A. Boytsova	85
The nature of the technetium volatile species formed during vitrification in borosilicate glass. Bradley Childs, Frederic Poineau, Kenneth R. Czerwinski, and Alfred P Sattelberger.	102
Electrochemical studies of technetium-ruthenium and rhenium- ruthenium alloys in nitric acid: implications for the long term behavior of metallic technetium waste forms. Romina Farmand, Frederic Poineau, Daniel J. Koury, David G. Kolman, Gordon D. Jarvinen and Kenneth R. Czerwinski	114
Fundamental chemistry of Technetium and Rhenium	
Review on the Tc Chemistry at SUBATECH in Inorganic Media (Chloride, Sulfate, Carbonate) with or without Radiation Effect. J. Vandenborre, M. Fattahi	128
Speciation of technetium in acidic media (CF_3SO_3H , H_2SO_4): Effect of alpha radiations. Ibtihel Denden, Jérôme Roques, Frédéric Poineau, Massoud Fattahi	141
Study induced oxidation/reduction of Tc in carbonate media by α and γ radiolysis. M. Ghalei, J.Vandenborre, G. Blain, F. Haddad, M. Fattahi-Vanani	159
Speciation of Technetium in Sulfuric Acid/Hydrogen Sulfide Solutions. Maryline Ferrier, Frederic Poineau, Jerome Roques,	176

Alfred P. Satteleberger and Kenneth R. Czerwinski				
Electrochemical properties of technetium species in acidic media. M. Chotkowski	190			
Aquatic chemistry and thermodynamics of Tc in dilute to concentrated saline systems. E. Yalcintas, X. Gaona, A. C. Scheinost, M. Altmaier, H. Geckeis	204			
Density and activity of perrhenic and pertechnetic acid aqueous solutions at 25°C. P. Moeyaert, L. Abiad, C. Sorel, JF. Dufrêche, M. Miguirditchian and P. Moisy	218			
Comparative study of several supramolecular TcO ₄ ⁻ and ReO ₄ ⁻ receptors. K.E. German, Ya.A. Obruchnikova, G.V. Kolesnikov, G.A. Kirakosyan, I.G. Tananaev, B.F. Myasoedov	229			
The Chemistry of Technetium Chlorides. A. Sattelberger.	245			
Synthesis and Characterization of Binary Technetium Bromides and Iodides. Erik Johnstone, Frederic Poineau, Paul M. Forster, Alfred P. Sattelberger and Kenneth R. Czerwinski	258			
Dinuclear Technetium complexes with multiple metal-metal bonds. Poineau F., Forster P.M., Todorova T.K., Johnstone E.V., Kerlin W.M., Gagliardi L., Czerwinski K.R., Sattelberger A.P.	272			
Polynuclear Technetium Iodides Compounds with Multiple Metal- metal Bonds. W.M. Kerlin, F. Poineau, C. Malliakas, P.M. Forster, A.P. Sattelberger, K.R. Czerwinski .	284			
In-Situ Study Of Minor And Major Phase Formation And Transformation In Tc Bearing Mineral Analogues with Carbonate Starting Components. Gordon Thorogood, Brendan Kennedy, Emily Reynolds, Massey De Los Reyes and Helen Brand.	302			
Spectroscopic and Photophysical Properties of Tetracyanidonitridorhenium(V) and -technetium(V) Complexes. Takashi Yoshimura, Hayato Ikeda, Akitaka Ito, Eri Sakuda, Noboru Kitamura, Tsutomu Takayama, Tsutomu Sekine and Atsushi Shinohara				
Educational Opportunities Within the UNLV Radiochemistry PhD Program, J. Wendee.	344			
Rhenium complexes of benzothiazoles as models for the diagnosis of Alzheimer`s disease. T.I.AGerber,_XSchoultz	356			

Nitrosyltechnetium Complexes with Various P,N Ligands.					
Janine Ackermann, Adelheid Hagenbach, Ulrich Abram					
Fluorido Complexes of Low-valent Technetium. Samundeeswari Mariappan Balasekaran, Adelheid Hagenbach, Ulrich Abram	390				
Formation of nitrosyl-containing o-phenanthroline complex of iron in presence of TcO_4^- and HNO_3 . Tatiana Boytsova, V.A. Babain, A.A. Lumpov, A.A. Murzin	403				
A new method for rapid extraction of rhenium from raw vegetation with subsequent determination of the metal under field conditions. Ognyan Bozhkov and Christina Tzvetkova	414				
Rhenium in the industry					
Sorption separation of Rhenium and associated components of polymetallic raw materials. I. Troshkina, N.V. Balanovskyi, A.V. Shilyaev, V.A. Moiseenko, Nway Shwan Oo, A.P. Grekhov	424				
Ionosilicas for Ion Exchange Reaction. P. Hesemann, M. Gigue, P. Moisy, B. Prelot, U. D. Thach	442				
Study on Rhenium sorption at high rate from washing acid of the sulphuric acid plant at balkhash copper plant. Sergey Zakharyan, A.B. Yun, E.I. Gedgagov, I.V.Terentieva	464				
Study on Rhenium desorption at high rate from macroporous low base ionites. S. Zakharyan, A.B. Yun, E.I. Gedgagov, V.A. Chen	467				
Technetium and Rhenium in nuclear medicine					
Molybdenum-99 production from a thorium target irradiated by light charged particles up to 70 MeV. C. Duchemin, Arnaud Guertin, Ferid Haddad, Vincent MÉtivier, Nathalie Michel	472				
Rhenium-188: application for glioblastoma internal radiotherapy. Annabelle Cikankowitz	473				
Starch based microparticles radiolabelling with 99mTc and 188Re for diagnostic and therapy of Hepatocellular carcinoma. E.Verger, A. Cikankowitz, A. Bouvier, N. Lepareur, J. Benoit, J. Deloye, C. Aubé, O. Couturier, F. Lacoeuille, R. Hustinx, F. Hindré	474				
Rhenium-tricarbonyl with a new tripodal N_2O ligand: from structural investigations to a therapeutic radiopharmaceutical. Romain	475				

Echeynne, Sihem Guizani, Mariusz Wolff, Eric Benoist, Nicolas Lepareur	
Interdisciplinary consortium collaboration for the development of radiopharmaceutical approach for effective diagnostics and therapy of prostate cancer in Russia. K. German, O. Vlasova, V. Petriev, V. Skvortsov, G. Kodina, A. Maruk, N. Airapetova, N. Epshtein, N. Nerozin, A. Safonov, V. Lebedev, Ya. Obruchnikova, Yu. Shevko	476
Influence of oxygen isotopes on the NMR parameters of the pertechnetate anion TcO4 ⁻ . Use of technetium-99g in PET nuclear chemistry technology: application of 99gTc-NMR for analysis of O-18 content in water. K. German, G. Kirakosyan, V. Tarasov	491
Poster session	
Technetium and Rhenium sulfides – formation: kinetics, structure and properties, K. E. German, A.V. Safonov A.A. Shiryaev, Ya. A. Obruchnikova, V.A. Ilin, V.P. Tarasov, A. V. Afanasiev, V.E. Tregubova, S.N. Kalmykov	494
Supramolecular interactions of caffeine molecules with each other, water molecules and oxygen atoms of tetraoxidoanions in the three new different compounds $Me(H_2O)_6[ReO_4]_2$ caffeine (Me = Co, Cd, Mg). K. German, M.N. Glazkova, M.S. Grigoriev, Ya.A. Obruchnikova, G.V. Kolesnikov, Yu.A. Ustynyuk, F. Poineau, O.S. Kryzhovets	503
Biological reduction of pertechnetate ion in the implementation of technology biobarrer into aquifers contaminated with radioactive waste. A. Safonov T. Khijniak, V. Ilin, K. German	510
Development of Bio filtration system for cleaning solutions from uranyl and pertechnetate anions. A. Safonov, O. Gorbunova, T. Khijniak, K. German	511
Platinum And Rhenium Recovery From Pt - Re Reforming Catalysts via Plasma Arc Technology. Peter Keeley, Neil Rowson, David Deegan	512
TechnetiumandRheniumComplexeswithHeavyArylchalcogenolates.Bruno N. Cabral, Ernesto S. Lang,AdelheidHagenbach, Lars Kirsten, Ulrich Abram	516
Solvent extraction separation of Rhenium and Molybdenum using octanols and mixtures of trisooctilamine 2-octanone in acid media. A.	523

Petrova, A. Kasikov	
Evaluation of Rhenium Production Rates in Tungsten Irradiated in Fast Reactors by Using Continuous Energy Monte Carlo Code MVP. Tsugio Yokoyama, Atsunori Terashima and Masaki Ozawa	526
Application of Solvent Extraction Preconcentration methods for Spectrophotometric Determination of Traces of Molybdenum in Radiopharmaceutical Preparation using 1,5-Diphenylcarbazide. Nafisa H. Gmati and M. A. Abuzwida	533
Bio-sorption processes for radioactive waste purification from Tc, U, Sr and Cs. Alexey Safonov, Varvara Tregubova, Olga Gorbunova, Kjnstantin German, T. Nazina	537
Measurement of ⁹⁹ Tc via Cherenkov counting. Mojmír Němec, Kateřina Čubová	539
Tc(V) and Re(V) oxido complexes with tetradentate thiocarbamoylbenzamidines for bioconjugation. Adelhei Hagenbach, U.Abram	540
Review on Chemical Separation of Tc with Extraction Chromatographic Resins. A. Bombard, S. Happel	544
Microorganisms from extreme habitats for use in biological technologies to LRW treatment. A. Safonov, S. Gavrilov, T. Khijniak, K. German, I. Troshkina	545
Octahedral chalcogenide rhenium cluster complexes with phosphine and pyridine derivatives : synthesis, structure and properties. A.A. Ivanov, V.K. Khlestkin, M.A. Shestopalov, K.A.Brylev, Y.V. Mironov	550
Prospects of octahedral rhenium cluster complexes in biology and medicine. Michael A. Shestopalov, Anna A. Krasilnikova, Kristina E. Zubareva, Konstantin A. Brylev, Yuri V. Mironov	551
Rhenium recovery from secondary raw material. Anna Petrova, Aleksandr Kasikov	552

The 8th ISTR aimed at continuing 20 years of tradition on Technetium and Rhenium conferences and the symposium happening every 3 years. It was originally created in 1993 and has been successively held in 1993 (Sendai, Japan), 1996 (Moscow, Russia), 1999 (Shizuoka, Japan), 2002 (Dubna, Russia), 2005 (Oarai-Ibaraki, Japan), 2008 (Port-Elizabeth, South Africa) and 2011 (Moscow, Russia).

The aims of the 8th ISTR was to cover all aspects of Technetium and Rhenium chemistry. The conference was organized around plenary lectures (30-40 minutes), short lectures (15-20) minutes and poster sessions. <u>The technical program has covered the following topics :</u>

- Chemistry of Technetium in the nuclear fuel cycle (separation, disposal, waste form...)
- Technetium and Rhenium in nuclear medicine (isotopes production, labeling, coordination chemistry...)
- Radioanalytical chemistry (Measure of Tc an Re in biosphere...)
- Fundamental chemistry of Technetium and Rhenium (synthetic, materials and coordination chemistry, inorganic and organometallic complexes, properties...)
- Rhenium in the industry (mining, metallurgy, catalysis...)

Committees

International Advisory Committee

R. Alberto (Switzerland) J. Barbet (France) B. Bryskin (USA) K. Czerwinski (USA) J. R. Dilworth (England) Y. Fujii (Japan) T.I.A. Gerber (South Africa) K.E. German (Russia) G.E. Kodina (Russia) Ph. Moisy (France) M. Ozawa (Japan) V.F. Peretrukhin (Russia) A. Sattelberger (USA) T. Sekine (Japan) I.D. Troshkina (Russia) A.Yu. Tsivadze (Russia) F. Poineau (USA) Yuezhou WEI (China) Shuao Wang (China)

Local committee

Massoud Fattahi - Chair, Laboratoire SUBATECH - Ecole des Mines de Nantes La Chantrerie - 4 rue Alfred Kastler - BP 20722 44307 NANTES Cedex 3 - France - together with : Séverine Gadeyne Sophie Girault Bernard Kubica Tanja Pierret Pascaline Rétout,

Philippe Moisy – Co-chair, CEA MARCOULE - DEN/DRCP/SERA/LCAR - Bât 399, BP17171 30207 BAGNOLS-SUR-CEZE Cedex

Frédéric Poineau – Co-Chair, Department of Chemistry / University of Nevada, Las Vegas - 4505 S. Maryland Pkwy - Las Vegas, NV 89154 Contact : org_istr2014@subatech.in2p3.fr Sponsored by :

Multiple Facets of Technetium and Rhenium Chemistry in Molecular Imaging and Therapy

<u>Roger Alberto</u>, Samer Ursillo, Henrik Braband, Michael Benz, Michael Felber, Sebastian Imstepf

Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich

PET is becoming more and more important, but ^{99m}Tc as a radionuclide for Single Photon Emission Computed Tomography (SPECT) has still the strongest impact on diagnostic health care. Whereas SPECT cameras can compete with PET cameras, chemical research efforts are required for keeping the role of Tc alive. Complementing diagnosis with ^{99m}Tc by therapeutic modalities is a clear asset over PET strategies (with ¹⁸F). Adapting the theranostic concept, we aim at synthesizing ^{99m}Tc complexes which mimic pharmacophores (imaging) with cold Re homologues (therapy), the ^{99m}Tc complex is a structural moiety in pharmaceutically active lead structures. This strategy requires demanding organometallic reactions. The preparation of cyclopentadienyl based bioorganometallic compounds is a focus since the Cp-ring can mimic phenyls in pharmaceuticals. Complexes of the type [(Cp-R)^{99m}Tc(CO)₃] opened the so-called Cpphenyl analogy.¹ The Cp complex can be a tag, as will be shown with peptides (A),² but also an integral part of structure in which it plays an essential role for receptor recognition. Examples with CA and HDAC inhibitors will be presented.³ Replacing Tc by Re will yield homologues with almost identical, pharmacological properties but with therapeutic potential.

We have extended the approach to cyclopentadienyl derivatives with two carboxylato groups (B) allowing to couple two bioactive functionalities to one ^{99m}Tc or Re complex. Finally, for replacing a phenyl ring in a pharmaceutical by a "true" phenyl ring, first insights in arene chemistry will be given. These aspects from low valent, organometallic chemistry will be rounded up by insights from high valent ^{99m}Tc and Re chemistry.⁴

- 1. Liu, Y.; Spingler, B.; Alberto, R. et al., J. Am. Chem. Soc., 2008, 130, 1554.
- 2. Nadeem, Q.; Can, D.; Alberto, R. et al., Org. & Biomol. Chem., 2014, 12, 1966.
- 3. Can, D.; Spingler, B.; Alberto, R.; et al., Angew. Chem. Int. Edit., 2012, 51, 3354.
- 4. Braband, H., Benz, M., Tooyama, Y. Alberto, R. Chem. Commun., 2014, 50, 4126.

A bit of History..

"During this period of time*, the coordination chemistry of technetium played a significant role. The successful development of ^{99m}Tc imaging agents **was totally dependent on the design of technetium complexes** since the biodistribution and targeting capability depend exclusively on their lipophilicity, size and charge."

"Although the focus of radiopharmaceutical research has shifted towards biological characterization of radiolabeled receptor ligands in the last several years, coordination chemistry still plays a significant role in the design and development of new target-specific radiopharmaceuticals."

The role of coordination chemistry in the development of target specific radiopharmaceuticals S. Liu, *Chem. Soc. Rev.* **2004**, *33*, 445

A bit of History..

Much of this work has been directed toward the investigation of kinetically inert complexes formed in oxidation states that are readily accessible in aqueous media by the reduction of the pertechnetate ion. These studies have demonstrated that it is possible to prepare classes of stable complexes in both the **V** and the III oxidation states with the appropriate choice of ligand.

This in turn has enabled us (a) to synthesize this class of air- and water-stable complexes at tracer concentrations (ca. $10^{-8}-10^{-9}$ M) with metastable 99m Tc (b,) to begin to evaluate the biological distributions of these complexes in animals, and (c) to establish structure function correlations on a potentially large class of well-characterized complexes.

Synthesis and Characterization of Hexakis(alkyl isocyanide) and Hexakis(aryl-isocyanide) Complexes of Technetium(I) M. J. Abrams, A. Davison, A. G. Jones, C. E. Costello, H. Pang, *Inorg. Chem.*, **1983**, *22*, 2798

6

Universität Zürich ^{um}	Organometallic chemistry / Metals in Medicine							
Organometallic compounds in other fields of life sciences								
Metals in Medicine								
	Cr Mo	Mn Tc Re	Fe Ru Os	Co Rh Ir	Ni Pd Pt	Cu Ag Au		
Essentially nothing with rhenium, not with cold and scarcely with ^{186/188}Re Technetium – Rhenium, the matched pair paradigm								
did we miss something ?						17		

*Gilles Gasser et al. ACS Chem. Biol. 2014, in press

Universität Zürich	Targeting the Nucleus			
			S2	
М	Nucleus	Mitochondria	Nucleus	Mitochondria
Re-185 (ICP-MS)	71%	1.6%	74%	2.1%
Tc-99m (activity meter)	81%	1.2%	76%	1.8%
S3 S4				
М	Nucleus	Mitochondria	Nucleus	Mitochondria
Re-185 (ICP-MS)	80%	1.6%	66%	1.8%
Tc-99m (activity meter)	82 %	1.4%	79%	3.2%
Values: Nuclear and mitochondrial internalization, respectively, as the percentage of activity or Re content with respect to whole cell uptake. major accumulation of compounds in the nucleus ~70-80% minor accumulation in mitochondria ~1-2% good (-excellent) agreement between quantification modalities				

Verification with two quantification modalities

Universität Zürich ^{en}	Acknowledgr	Acknowledgments		
	99(m) Tc Chemistry University of Zürich Henrik Braband Michael Benz Sebastian Imstepf Michael Felber Qaisar Nadeem Samer Sulieman Angelo Frei Guiseppe Meola	ITN, Lisbon Portugal I. Santos P. Raposinho F. Mendes TU Munich M. Schottelius HJ. Wester University of Florence, Italy Prof. C. Supuran		
Schweizerische Edge Centederation suize Centederation swize Centederation swize Bildung und Forschung		SWISS NATIONAL SCIENCE FOUNDATION		
		IEN Progenics e results for Tife		
		67		

TECHNETIUM BEHAVIOR IN THE PUREX PROCESS

Pascal BARON Current Fuel Cycle Back-End Program CEA, Nuclear Energy Division

ISTR 2014 – 8th INTERNATIONAL SYMPOSIUM ON TECHNETIUM AND RHENIUM 29th SEPTEMBER – 3rd OCTOBER 2014, Pornichet LABAULE FRANCE

Cea 1ST CYCLE U-Pu WITH U/Pu PARTITIONING

CEA INTRODUCTION

Tc is just one FP among many others <u>YES, BUT:</u>

Tc production yield in reactor is high

on the contrary than most of the others, Tc is able to be extracted by TBP (multiple mechanisms)
Tc can have deleterious impact on U/Pu REDOX chemistry in the PUREX process (multiple oxydation state)

INTRODUCTION

cea

Tc is just one FP among many others <u>YES, BUT:</u>

Tc production yield in reactor is high

on the contrary than most of the others, Tc is able to be extracted by TBP (multiple mechanisms)
Tc can have deleterious impact on U/Pu REDOX

chemistry in the PUREX process (multiple oxydation state)

CC2 TECHNETIUM BEHAVIOR IN THE DISSOLUTION STEP

AMOUNT:

- About 1kg / ton (burn up dependent)
- not cooling-time dependent (⁹⁹Tc , half-life= 2,1.10⁵years),

SPECIES

cea

- TcO₂ and « poly métallic »compounds (undissolved species)
- **TcO**₄⁻ in the dissolution solution

DISSOLUTION YIELD

- Fuel type dependent at lab scale: UOX ~ 90 %, MOX ~ 60 %, SFR ~ 20 %
- Lower yield at industrial scale (rotating dissolver): ~50% for UOX and MOX

TECHNETIUM EXTRACTION BY TBP

SIMPLIFIED EXTRACTION MECHANISMS

 $H^+ + TcO_4^- + 3TBP \Leftrightarrow [HTcO_4, 3TBP]$

 $\left[\overline{\mathrm{UO}_{2}(\mathrm{NO}_{3})_{2},2\mathrm{TBP}}\right] + \mathrm{TcO}_{4}^{-} \Leftrightarrow \left[\overline{\mathrm{UO}_{2}(\mathrm{TcO}_{4})(\mathrm{NO}_{3}),2\mathrm{TBP}}\right] + \mathrm{NO}_{3}^{-}$

 $\left[\overline{Pu(NO_{3})_{4},2TBP}\right] + TcO_{4}^{-} \Leftrightarrow \left[\overline{Pu(TcO_{4})(NO_{3})_{3},2TBP}\right] + NO_{3}^{-}$

 $[Zr(NO_3)_4, 2TBP] + TcO_4^- \Leftrightarrow [Zr(TcO_4)(NO_3)_3, 2TBP] + NO_3^-$

Co-extraction:

-Higher for Zr >> Pu > U

- Reduced at high [NO₃-] (competition)

cea

cea

TECHNETIUM BEHAVIOR IN EXTRACTION STEP

TECHNETIUM BEHAVIOR IN EXTRACTION STEP OPTIONS TO LIMIT THE IMPACT

CHEMICAL ADJUSTMENT

Introduction of Zr complexing agent: carboxylic acids

- Oxalic acid (forgiven / Pu leakage risk)
- Other acids (ex.: KMA)

NOT READY FOR UP3

OPERATING ADJUSTMENT / TOPOLOGY

- Adjunction of a complementary operation the "Tc scrubbing"
- (allow separate management of Tc / others FPs)

SOLUTION CHOOSEN FOR UP3 AND UP2-800

TECHNETIUM BEHAVIOR IN EXTRACTION STEP

TECHNETIUM SCRUBBING FOR LA HAGUE

PRINCIPLES:

cea

cea

- Zr scrubbing at first step
- Tc back extraction (high acidity)

DESIGN CONSTRAINT (1985, active start of UP3 1989)

Minimization of the impact on upstream/downstream steps (mainly acid effluents)

OPTIMISATION USING PAREX CODE:

→ DF Tc = 2,8 UP3 (1989) (validated at lab scale on genuine solution and confirmed by UP3)

Today DF > 30 routinely performed at UP2800 and UP3

Cea U/Pu SPLITTING STEP

« FUNCTIONAL » REACTION : Pu(IV) Reduction

 $U^{4+} + 2Pu^{4+} + 2H_2O \longrightarrow UO_2^{2+} + 2Pu^{3+} + 4H^+$

« PARASISTIC »REACTION : Pu(III) Oxydation

 $Pu^{3+} + HNO_2 + H^+ + 0,5HNO_3 \longrightarrow Pu^{4+} + 0,5H_2O + 1,5HNO_2$

« USEFULL » or « STABILIZING » REACTION : HNO₂ Destruction

 $N_2H_5NO_3 + HNO_2 \longrightarrow HN_3 + HNO_3 + 2H_2O$

Cea U/Pu SPLITTING STEP

CCC TECHNETIUM BEHAVIOR IN URANIUM/PLUTONIUM SPLITTING STEP

SIMPLIFIED REDOX MECHANISM

Globally	where Tc _{ox} is for Tc(V Tc _{red} is for Tc(I) and/or Tc(VI) V) (ou Tc(III) ?)
$Tc_{red} + zHNO_3 +$	\rightarrow Tc _{ox} + zHNO ₂ +	(limiting reaction)
$Tc_{ox} + yU^{4+} +$	\rightarrow Tc _{red} + yUO ₂ ²⁺ +	(very fast)
$\mathrm{Tc}_{\mathrm{ox}} + x\mathrm{N}_{2}\mathrm{H}_{5}^{+} + \dots$	\rightarrow Tc _{red} +	(fast)
$Tc(VII) + wU^{4+} + \dots$	$\rightarrow Tc_{ox} + wUO_2^{2+} + \dots$	(very fast)

– Kinetic of first-order versus [Tc]

cea

-With relatively high activation energy (22 kcal/mol)

DELETERIOUS IMPACT OF Tc ON PUREX PROCESS

CE2 TECHNETIUM BEHAVIOR ARRANGEMENT TAKEN FOR U/Pu SPLITTING STEP

OPERATING CONDITIONS

- Increase excess of hydrazine
- Limiting operating temperature
- Neutron's on line monitoring

UP3 - UP2 800 RESULTS

- Outstanding stable operation
- **DF** of uranium vs plutonium $> 10^6$
- Good agreement with model predictions

CE2 IN CONCLUSION

Tc is just one FP among many others

YES, BUT:

It has an atypical behavior in the PUREX process

That must be taken into account in the flowsheet design step

Its chemistry needs to be deepen in the frame of FR fuel reprocessing (high Pu)

Pornichet LA BAULE, FRANCE 29TH SEPTEMBER, 3RD OCTOBER 2014

> Pascal BARON www.cea.fr

THANK YOU FOR YOUR ATTENTION !

cea

FISSION PRODUCTS : AVERAGE DISTRIBUTION (1 ton UOX, 3,5 % ²³⁵U ,33 GWi/t)

Family	Amount (kg/t)		
Rare Gas (Kr, Xe)	Kr : 96 Ndm ³ (0,3 PBq) Xe : 736 Ndm ³		
³ T & Alkali (Cs, Rb)	³ T = 16 TBq ; 3,977		
Alkaline earth (Sr, Ba)	2,407		
Yttrium & Lanthanides	10,198		
Zirconium	3,586		
Chalcogens (Se, Te)	0,527		
Molybdenum	3,335		
Technetium	0,814		
Platinoids (Ru, Rh, Pd)	3,892		
Ag, Cd, Sn, Sb, etc	0,216		

TECHNETIUM BEHAVIOR OF IN NITRIC ACID

J. Garraway and P.D. Wilson, Journal of Less-Common Metals, 97(1984) 191-203

TECHNETIUM BEHAVIOR IN URANIUM/PLUTONIUM SPLITTING STEP

cea

THE ROLE OF A CHOICE OF THE TARGET FORM FOR ⁹⁹Tc TRANSMUTATION

A.A. Kozar', V.F. Peretrukhin, K.E. German

Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, 31/4 Leninsky prosp., Moscow, 119071, Russia, kozar@ipc.rssi.ru

⁹⁹Tc transmutation can be the source of artificial stable ruthenium $^{100-102}$ Ru. Such ruthenium has been received as a result of a neutron irradiation of Tc targets up to 20 – 70 % burn-up (for 3 different groups of Tc targets) in experiments on SM high-flux reactor. Metal homogeneous Tc targets had the form of disks in diameter 6MM and with thickness of 0.3 mm [1, 2]. They have been irradiated in geometry of a thin plate and consequently occupied irradiated volume corresponding to the cylinder in diameter and with height of 6 mm.

Artificial ruthenium demanded exposure during 8 - 10 years for application without restrictions, as it contained fission fragment ¹⁰⁶Ru ($T_{1/2} = 369$ days) which can not be removed from this material by chemical methods.

Application of heterogeneous targets with nuclear-inert stuff to reduce a ¹⁰⁶Ru radioactivity in artificial Ru and to lower its exposure time before application or to exclude a technological step on additional preliminary purification of commercial Tc from actinide impurities [3]. Hence, the target form has effect on the artificial ruthenium purity at equal Tc nuclear density in irradiated volume.

Transformation of disks in cylinders in the conditions of identical irradiated volume could allow to lower ¹⁰⁶Ru concentration in artificial ruthenium. The minimum fission-fragment path length in Tc metal makes about 5 microns (average fission-fragment path length is about 8 microns). The corresponding form of a heterogeneous target is a tablet consisting of a mix of spherical Tc metal particle in diameter of 5 microns and a nuclear-inert stuff with Tc average density which in 20 times is less, than Tc metal. In this case all fission-fragments, including ¹⁰⁶Ru, escape the Tc (Tc-Ru) grains to stuff. The average distance between Tc spherical grains is about 23 microns, between their surfaces is about 18 microns at regular distribution of Tc particles in a target.

Fission-fragment path length in the most applicable nuclear-inert materials (such as ZrO₂, Y₂O₃, MgAl₂O₄, MgO, Y₃Al₅O₁₂, SiC, Al₂O₃, ZrO₂-Y₂O₃, ZrO₂-CaO and many others) makes 12 – 15 microns, hence hit probability of ¹⁰⁶Ru fission-fragments in the next Tc grain is negligibly small. Artificial ruthenium from such target would be almost free from ¹⁰⁶Ru nuclei. Additional purification of commercial Tc from actinide impurities would be not necessary at a choice of such target form instead of metal disks. In this case artificial ruthenium could be applied in non-nuclear field through 3 – 3.5 years after an irradiation, necessary to decay of transmutation product ¹⁰³Ru ($T_{1/2} = 39.3$ days).

References

1. V. Peretroukhine, V. Radchenko, A. Kozar' et al. Technetium transmutation and production of artifical stable ruthenium. // Comptes Rendus. – Ser. Chimie. – 2004. – Tome 7. – Fascicule 12. – P. 1215 – 1218.

2. A.A. Kozar', V.F. Peretroukhin, K.V. Rotmanov, V.A. Tarasov. The elaboration of technology bases for the artificial stable ruthenium preparation from technetium-99 transmutation products. // 7th International Symposium on Technetium and Rhenium – Science and Utilization. Moscow, Russia, July 4 – 8, 2011. – Book of Proceedings. – P. 113. – Publishing House GRANITSA, Moscow, 2011. – 460 p.

3. A.A. Kozar', V.F. Peretroukhin, K.V. Rotmanov, V.A. Tarasov. The elaboration of technology bases for the artificial stable ruthenium preparation from technetium-99 transmutation products. // Ibid. – P. 113.

THE ROLE OF A CHOICE OF THE TARGET FORM FOR ⁹⁹Tc TRANSMUTATION

ISTR 2014 8th International Symposium on Technetium and Rhenium Pornichet LA BAULE, France 29th September - 3rd October 2014

- A.A. Kozar',
- V.F. Peretrukhin,
- K.E. German
- Frumkin Institute of Physical Chemistry and Electrochemistry of RAS,
- 31/4 Leninsky prosp., Moscow, 119071, Russia,
- kozar@ipc.rssi.ru
- guerman k@mail.ru

IT'S WELL KNOWN (SINCE 2000) - ⁹⁹Tc transmutation can be the source of artificial stable ruthenium ^{100–102}Ru, the second of the mjst interesting elements of the Periodic table. Such ruthenium has been synthesized as a result of a neutron irradiation of Tc targets up to 20 – 70 % burn-up (for 3 different groups of Tc targets) in experiments at SM high-flux reactor in 1999 – 2003.

Tc transmutation experiment (IPCE RAS – NIIAR, 1999-2008) In IPC RAS a set of metal disc targets (10x10x0.3 mm) prepared and assembled in two batches with total weight up to 5 g. Transmutation experiment was carried out at high flux SM-3 reactor (NIIAR, Dimitrovgrad)

achieved on HFR in Petten earlier

Duo S V CN

IRRADIATION OF ⁹⁹Tc METAL TARGETS IN NUCLEAR HIGH FLUX REACTORS

Petten transmutation experiment

⁹⁹Tc targets: metal cylinders Ø 4.8 mm and with height of 25 mm

⁹⁹Tc burn-up in Petten reactor are 6% (T1) and 16 – 18% (T2).

Dimitrovgrad transmutation experiment on SM highflux reactor

 99 Tc targets: metal disks Ø 6.0 \pm 0.3 mm and with thickness of 0.3 \pm 0.02 mm

Total targets mass is ~10 g

99Tc BURN-UP AND HALF-CONVERSION PERIOD

№ of	Burn-up,	%	Irradiation	Half-conversion T^{burn}
group	measured	calculated	eff. days	eff. days
1	19±2	20±2	72.7	240
2	45±3	50±5	262.7	305
3	70±5	70±7	424.8	245

Measured and calculated ⁹⁹Tc burn-up and half-conversion periods in SM reactor.

⁹⁹Tc burn-up in Petten reactor are **6 % (T1)** and **16 – 18 % (T2)**.

⁹⁹Tc half-conversion period

 $T_{1/2}^{burn} \approx$ **2160 eff. days.**

Fig. 2. Calculated dependence of ⁹⁹Tc burn-up on irradiation time (—) and its experimental values (•) for 3 groups of targets.

ARTIFICIAL Ru ACTIVITY DECAY

Actinide content in Tc: $5 \cdot 10^{-8}$ g An per g of Tc (better values are expensive!) Actinide fission product ¹⁰⁶Ru ($T_{1/2}$ =371.6 days) can't be separated from artificial Ru by chemical methods.

Activity of ¹⁰⁶Ru + ¹⁰⁶Rh in artificial Ru

$$\beta^-$$
, 371.6 days β^- , 29.8 see

¹⁰⁶Ru (pure β -radiator, γ is absent) \longrightarrow ¹⁰⁶Rh \longrightarrow ¹⁰⁶Pd (stable) ¹⁰⁶Rh has 2 main γ -lines with energies 511.8 keV and 621.8 keV

In 2006 ¹⁰⁶Rh activity in Ru from 20 % burn-up targets later ~ 2100 days {5.7 $T_{1/2}$ (¹⁰⁶Ru)} after irradiation stop:

15 ± 2 Bk/g of Ru \Rightarrow total activity of pair ¹⁰⁶Ru + ¹⁰⁶Rh A^{106} ~ 30 Bk/g of Ru

Later 10 years after irradiation stop: $A^{106} = 3.2 \pm 0.4$ Bk/g of Ru < $A^{1}_{lim} = 3.7$ Bk/g \Rightarrow

\Rightarrow Since 2010 artificial Ru from 20% burn-up targets can be used without limitation

Artificial Ru separated from 45 % and 70 % burn-up targets can be used in non-nuclear industry ~9 and ~8 years after synthesis correspondingly

Relative yield Y of 106 Ru nuclei recoiling from spherical grains of technetium powder, in dependence on their diameter D (average fission-fragment path length is about 8 microns).

Possible target chemical substances

Target substances 1. Metal

Sample type : Starting

- Ordinary Powder metal
- Fused metal
- Single crystal
- Foil

<u>material :</u>

- TcO₂
- NH_4TcO_4
- R₄NTcO₄
- Instrumentation
- Furnaces
- 6% H₂|Ar industurial balloon mixture
- Ingots
- Rolling-mill
- et cetera...

1. Bulk Tc metal

- Set-up used for fusion and casting of Tc metal
- Single crystal Tc metal

1. Tc metal – foil, X-ray study

- d: 20 micrometers
- Systematic absence of X-ray reflex
- = Preferential orientation of crystallites with C axe perpendicular to the foil surface

1. Tc metal – foil, assembling

• Spacer grid-bush with ⁹⁹Tc targets (1) and aluminium core (2) of capsule for loading in reactor.

1. Tc metal – foil chemical consequences

- Dissolution in HNO₃ dramatically slowed-down starting from 20% Tc to Ru conversion
- Possible to increase the dissolution rate by aggressive agents addition (Ag²⁺, IO₄⁻) but corrosion problems arises
- Possibly the best reprocessing procedure burning in O₂ – not approved by industry to date

• Orthorhombic Tc metal is formed at low C content

12

Target substances – Tc carbide 2. Tc₆C + nC excess carbon

 EXAFS study of Tc₆C + nC [1] – wavelet presentation

[1] K.German, Ya.Zubavichus ISTR2011

1. Tc carbide chemical consequences

- Dissolution of Tc is more active as no RuC is known and so it is'nt formed during transmutation of Tc carbide to Ru - Tc and Ru being stabilized in separate phases
- Drawback: Possible mechanical inclusions of Tc in Ru residue at high burn-ups
- Mixtures with C excess could be the best choice because resonance energy neutrons are participating in transmutation due to enhanced thermolisation inside the target

1. Tc dioxide chemical consequences

- Preparation by chemical reduction high impurity content
- Preparation from NH4TcO4 similar to Tc metal
- Target instability due to excess O released (Ru is stabilised as metal)
- Some Tc2O7 formed at high burn-up
- This target material is not recommended

Preparation of artificial stable Ruthenium by transmutation of Technetium

102

Table 2. Content of isotopes in natural and artificial ruthenium (at. %)

Isotope	Natural Ru [6]	Ru from indicated sample		
		Te 19% Ru	Tc 45% Ru	
u	5.46 ± 0.01		_	
u	1.868 ± 0.005	-	-	
u	12.63 ± 0.02	0.06	0.003	
Ru	12.53 ± 0.02	98.93 ± 0.02	97.94 ± 0.02	
Ru	17.02 ± 0.03	0.54 ± 0.02	1.35 ± 0.02	
Ru	31.63 ± 0.06	0.45 ± 0.01	0.71 ± 0.01	
Ru	18.87 ± 0.04	0.02	0.002	

- Tc target material:
- Tc metal powder / Kozar (2008)
- Tc C composite Tc carbide / German (2005)
- Rotmanov K. et all. Radiochemistry, 50 (2008) 408:
- New Ruthenium is almost monoisotopic Ru-100, it has different spectral properties
- It is available only to several countries that develop nuclear industry

Conclusions

- ⁹⁹Tc transmutation can be the source of artificial stable ruthenium ^{100–102}Ru.
- Metal homogeneous Tc targets are possible
- Tc carbide targets are favorabale
- Artificial ruthenium demanded exposure during 8 10 years for application without restrictions
- Application of heterogeneous targets with nuclearinert stuff to reduce a ¹⁰⁶Ru radioactivity in artificial Ru
- The target form effect the artificial ruthenium purity at equal Tc nuclear density in irradiated volume.
- Transformation of disks in cylinders in the conditions of identical irradiated volume could allow to lower ¹⁰⁶Ru concentration in artificial ruthenium. The minimum fission-fragment path length in Tc metal makes about 5 microns (average fission-fragment path length is about 8 microns). The corresponding form of a heterogeneous target is a tablet consisting of a mix of spherical Tc metal particle in diameter of 5 microns and a nuclear-inert stuff with Tc average density which in 20 times is less, than Tc metal. In this case all fission-fragments, including ¹⁰⁶Ru, escape the Tc (Tc-Ru) grains to stuff. The average distance between Tc spherical grains is about 23 microns, between their surfaces is about 18 microns at regular distribution of Tc particles in a target.
- Fission-fragment path length in the most applicable nuclear-inert materials (such as ZrO_2 , Y_2O_3 , $MgAl_2O_4$, MgO, $Y_3Al_5O_{12}$, SiC, Al_2O_3 , ZrO_2 - Y_2O_3 , ZrO_2 -CaO and many others) makes 12 15 microns, hence hit probability of ¹⁰⁶Ru fission-fragments in the next Tc grain is negligibly small. Artificial ruthenium from such target would be almost free from ¹⁰⁶Ru nuclei. Additional purification of commercial Tc from actinide impurities would be not necessary at a choice of such target form instead of metal disks. In this case artificial ruthenium could be applied in non-nuclear field through 3 3.5 years after an irradiation, necessary to decay of transmutation product ¹⁰³Ru ($T_{1/2} = 39.3$ days).

References

- 1. V. Peretroukhine, V. Radchenko, A. Kozar' et al. Technetium transmutation and production of artifical stable ruthenium. // Comptes Rendus. – Ser. Chimie. – 2004. – Tome 7. – Fascicule 12. – P. 1215 – 1218.
- 2. А.А. Коzar', V.F. Peretroukhin, К.Vразличные химические методы, а ские методы, а общий технеций, ка мишеналла рутения трансмутацией. Rotmanov, V.A. Tarasov. The elaboration of technology bases for the artificial stable ruthenium preparation from technetium-99 transmutation products. // 7th International Symposium on Technetium and Rhenium Science and Utilization. Moscow, Russia, July 4 8, 2011. Book of Proceedings. P. 113. Publishing House GRANITSA, Moscow, 2011. 460 p.
- 3. A.A. Kozar', V.F. Peretroukhin, К.Уразличные химические методы, а ские методы, а общий технеций, ка мишеналла рутения трансмутацией . Rotmanov, V.A. Tarasov. The elaboration of technology bases for the artificial stable ruthenium preparation from technetium-99 transmutation products. // Ibid. Р. 113.

Complexation and extraction of Pu(IV) in the presence of pertechnetic acid

L. Abiad, L. Venault and Ph. Moisy

CEA Marcoule, DEN/DRCP, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France

The hypothesis that pertechnetate ion can form extractible complexes with actinides at the +IV or +VI oxidation state in nitric acid is quite commonly pointed out. Therefore, in nitric acid, the pertechnetate anion could act as a co-ligand with the nitrate ion and then could replace it in the extracted species. It can be noticed that in the absence of nitric acid a complex of U(VI) with the pertechnetate anion $\overline{UO_2(TcO_4)_2.2TBP}$ has already been identified in an organic phase made of TBP. However, even in the presence of nitric acid, a mixed complex can be formed by replacing a nitrate anion by a pertechnetate one:

$$\overline{UO_2(NO_3)_2.2TBP} + TcO_4^- \rightleftharpoons \overline{UO_2(NO_3)(TcO_4).2TBP} + NO_3^-$$

To check the ability of pertechnetate ions to give rise to complexes with actinides, the study of the complexation of Pu(IV) by TcO_4^- was carried out by spectrophotometry in perchloric acid media. Absorption spectra of Pu(IV)-Tc(VII) mixtures, according to the temperature, enable the calculation of the complexation constant β_i of the complex present in solution by chemometric treatment. It was found that for [Tc]/[Pu] ratio up to 1300, two species are present in solution: the aquo ion Pu^{4+} and a complex which could either be $Pu(TcO_4)_3^+$ or $Pu(TcO_4)_4$. The complexation constants have been respectively estimated to $\beta_3 \sim 2.3 \pm 0.1$ and $\beta_4 \sim 3.5 \pm 0.2$ at T = 298 K.

On the other hand, some measurements of the distribution of Tc(VII) and Pu(IV) in biphasic system (HClO₄ – TBP 30%/cyclohexane) were carried out. Firstly, it has been shown that the extraction of pertechnetic acid alone involves 2.5 molecules of TBP perpertechnetic acid, indicating that the extracted species are both $\overline{HTcO_4}$. 2TBP and $\overline{HTcO_4}$. 3TBP. Secondly, in the presence of Pu(IV), this latter is highly extracted when the ratio [Tc]/[Pu] is close to 2500 with D_{Pu}~ 10. Therefore, two extraction equilibria for the extracted neutral complex Pu(TcO₄)₄ in organic phase are proposed:

$$8TcO_4^- + 2Pu^{4+} + 3\overline{TBP} \rightleftharpoons \overline{Pu(TcO_4)_4, TBP} + \overline{Pu(TcO_4)_4, 2TBP}$$
$$8TcO_4^- + 2Pu^{4+} + 3\overline{TBP} \rightleftharpoons \overline{(Pu(TcO_4)_4)_2, TBP} + \overline{Pu(TcO_4)_4, 2TBP}$$

Nevertheless, as the [Tc]/[Pu] ratio becomes lower than 1400, Pu(IV) is then poorly extracted with D-values not higher than 1. It is in accordance with the spectrophotometric observations and chemometric calculations assuming that, in these conditions the complex formed is $Pu(TcO_4)^{3+}$. The thermodynamic characteristics of this complex have thenbeen calculated.

Pu(IV) COMPLEXATION AND EXTRACTION IN PRESENCE OF PERTECHNETIC ACID

L. ABIAD, L. VENAULT, Ph. MOISY CEA Marcoule Nuclear Energy Division Radiochemistry and Process Department

CEO GOALS & CONTEXT

✓ Main Goal

To improve knowledge about Tc complexation chemistry with actinides

✓ Industrial interest: PUREX process

- > Disturbances in actinide extraction due to Tc
- Specific Tc scrubbing step
- > Chemistry of Tc in the process still not well described

Nuclear Energy Division RadioChemistry and Process Department

CC2 LITTERATURE DATA

Chemical behavior of Tc(VII) with metallic cations (U, Th, Zr, Pu)

 $\textcircled{} \$ Many studies only on the distribution of metallic cations between an aqueous and an organic solutions

 \mathbb{G} Sole identified complex in organic phase $\left[UO_2(TcO_4)_2, 2TBP\right]$

 $\ensuremath{\mathbb{Q}}$ Quoted in litterature (but not identified)[Macasek, 1983] $\ensuremath{[Th(NO_3)_3(TcO_4),2TBP]}$ $\ensuremath{Zr(NO_3)_3(TcO_4),2TBP]$

 $\begin{bmatrix} Th(NO_3)_3(TcO_4), 2TBP \end{bmatrix} \begin{bmatrix} Zr(NO_3)_3(TcO_4) \\ [Pruett, 1984] \end{bmatrix} \begin{bmatrix} Jassim, 1984 \end{bmatrix}$

♦ Co-extraction of TcO₄- with nitrate ion

 $Pu^{4+} + 3NO_3^- + TcO_4^- + 2\overline{TBP} \rightarrow \overline{Pu(NO_3)_3(TcO_4).2TBP}$

♦No studies about the complexation Pu(IV) – Tc(VII)

can Pu(IV) be complexed by Tc(VII) alone ? $Pu^{4+} + nTcO_4^- \Leftrightarrow Pu(TcO_4)_n^{(4-n)+}$

```
Nuclear Energy Division
RadioChemistry and Process Department
```


$$Pu^{4+} + nTcO_4^- \Leftrightarrow Pu(TcO_4)_n^{(4-n)+}$$

$$\beta_n = \frac{\left[Pu(TcO_4^{-})_n^{(4-n)+}\right]}{\left[Pu^{4+}\right]\left[TcO_4^{-}\right]^n}$$

✓ Inert acidic medium towards Pu(IV) chemistry : HClO₄

Limitation: radiolysis - competiting extraction of HClO₄ and HTcO₄

✓ Preparation of about 50 samples Tc(VII) – Pu(IV)

✓ **R** = 0 to 1400 where $R = \frac{[Tc(VII)]_{init.}}{[Pu(IV)]_{init}}$

 \checkmark Temperatures vary from T = 10 °C to T = 50 °C

Nuclear Energy Division RadioChemistry and Process Department 8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014 ⁴

CEA RESULTS

Experimental absorption spectra for 5 mixtures Pu(IV)-Tc(VII)

Nuclear Energy Division RadioChemistry and Process Department

8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014 ⁵

Qualitative study

- ✓ Changes in spectra → Existence of one or several complexes
- Pu(TcO₄);⁽⁴⁻ⁱ⁾⁺
- ✓ Effect of T → determination of thermodynamic data

> Quantitative study

- Spectrum λ = 520 760 nm
- Small changes in spectrum
- ✓ Free Pu(IV) & complexes in the same wavelength range
- ✓ No reference spectra for the complexes
 - → Direct treatment of spectra impossible
 - ➔ Chimiometric method
 - * Treatment of a lot of data
 - * Few hypothesis about the chemical composition

Nuclear Energy Division RadioChemistry and Process Department

8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014 ⁷

cea **CHIMIOMETRIC METHOD**

<u>2nd step:</u> Modeling Factors Analysis (MFA)

Complexation constants & reference spectra

RadioChemistry and Process Department

CHIMIOMETRIC METHOD CRA

Cea CHIMIOMETRIC METHOD

$\frac{\text{Results from MFA calculations}}{[Pu^{4+}]_{o} = 0.002 \text{ M}, I = 2, \text{ et } [TcO_4^{-}] = 0 \text{ to } 2 \text{ M})}$

Т	β ₃	β4
10°C	2,8 ± 5%	7,3 ± 16%
18°C	4,8 ± 21%	9,5 ± 21%
25°C	2,3 ± 4%	3,4 ± 5%
35°C	3,5 ± 2%	6,2 ± 2%
40°C	4,5 ± 2%	8,3 ± 4%
50°C	7,9 ± 14%	19,1± 14%

$$\frac{\text{MFA calculations are}}{\text{consistent with ML}_3 & \text{ML}_4}$$

$$3 \text{ TcO}_4^- + \text{Pu}^{4+} \xleftarrow{\beta_3} \text{Pu}(\text{TcO}_4)_3^+$$

$$or$$

$$4 \text{ TcO}_4^- + \text{Pu}^{4+} \xleftarrow{\beta_4} \text{Pu}(\text{TcO}_4)_4$$

```
Nuclear Energy Division
RadioChemistry and Process Department
```

8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014 ¹¹

CE2 EXTRACTION

Pu(IV) Distribution Ration in presence of Tc(VII)

<u>Goal</u>

- > To (undoubtedly) identify the complex in solution \Rightarrow ML₃ ou ML₄ ?
- > Determination of the distribution ratio D_{Pu} as a function of R = [Tc(VII)]/[Pu(IV)]

Method

- Thermodynamic equilibrium TcO₄ / TBP without Pu
- Adding small known amounts of Pu

$$\succ$$
 α counting \Rightarrow D_{Pu} = f(R)

 Nuclear Energy Division
 8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014
 12

Nuclear Energy Division RadioChemistry and Process Department

13 8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014

EXTRACTION OF Pu IN PRESENCE OF HTCO₄

Complexation of Pu(IV)

 $Pu^{4+} + 3TcO_4 \xrightarrow{-\beta_3} Pu(TcO_4)_3^+$ $\beta_3 = \frac{[Pu(TcO_4)_3^+]}{[Pu^{4+}][TcO_4^-]^3}$

$$Pu^{4+} + 4TcO_4^{-} \xrightarrow{\beta_4} Pu(TcO_4)_4$$
$$\beta_4 = \frac{[Pu(TcO_4)_4]}{[Pu^{4+}][TcO_4^{-}]^4}$$

Extraction of Pu(IV)

$$Pu^{4+} + 4TcO_4^{-} + x\overline{TBP} \rightarrow \overline{Pu(TcO_4)_4.xTBP}$$

 $K_{ext Pu} = \frac{[\overline{Pu(TcO_4)_4.xTBP}]}{[Pu^{4+}][TcO_4^-]^4[TBP]^x}$

 $D_{Pu} = \frac{[\overline{Pu(TcO_4)_4.xTBP}]}{[Pu^{4+}] + [Pu(TcO_4)_3^+] + [Pu(TcO_4)_4]}$

$$\log(D_{Pu}) = \log(K_{extPu}) + x \log([\overline{TBP}]) + \log(A)$$
$$A = \frac{[TcO_4^-]^4}{1 + \beta_3 [TcO_4^-]^3 + \beta_4 [TcO_4^-]^4}$$

Nuclear Energy Division RadioChemistry and Process Department

14

Nuclear Energy Division RadioChemistry and Process Department

8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014 ¹⁵

EXTRACTION OF Pu IN PRESENCE OF HTCO₄ Extracted species of Pu(IV) ? $Pu(TcO_4)_4, TBP$ and $Pu(TcO_4)_4, 2TBP$ Or $(Pu(TcO_4)_4)_2, 3TBP$ Possible extraction equilibria $2Pu^{4+} + 8TcO_4^- + 3\overline{TBP} \leftrightarrows Pu(TcO_4)_4, TBP + Pu(TcO_4)_4, 2TBP$ $K_{extPu} = 6.61 \times 10^5 L^{11}.mol^{-11}$ $2Pu^{4+} + 8TcO_4^- + 3\overline{TBP} \leftrightarrows (Pu(TcO_4)_4)_2, 3TBP$?

Nuclear Energy Division RadioChemistry and Process Department

8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014 ¹⁷

- Spectrophotometry / Chimiometry for higher R
 - Existence of Pu(TcO₄)₄ in aqueous solutions
 - \checkmark Calculation of β_4
- Structural study of Pu(TcO₄)₃⁺ complex

🗸 EXAFS

> Determination of the thermodynamical complexation constant β°

✓ Effect of ionic strength – SIT

 $\log\beta = f(\Delta \epsilon).I + f(\log\beta^{\circ})$

- > Pursuit of Pu(IV)-Tc(VII) extraction study
 - ✓ Higher [Pu(IV)]₀, lower [HTcO₄]₀, other [HClO₄]...
 - ✓ To improve D_{Pu} determination
 - To state precisely the stoechiometry of the extracted species
- > Modeling of liquid/liquid extraction involving Tc(VII) and Pu(IV)

 Nuclear Energy Division
 8th ISTR, La Baule (FRANCE), Sept. 29th, Oct. 3rd, 2014
 19

Thank you for your kind attention

THE WAYS OF TECHNETIUM LOCALIZATION AT THE SNF REPROCESSING

N.D. Goletsky, B.Ya. Zilberman, Yu.S. Fedorov, A.S. Kudinov, A.A. Timoshuk, L.V. Sytniuk, E.A. Puzikov, S.A. Rodionov, A.P. Krinitsyn, V.I. Ryasantsev, D.V. Ryabkov, T.A. Boytsova

V.G. Khlopin Radium Institute, 194021, S.-Petersburg, 2-nd Murinskiy Prospect, b. 28, goletsky@khlopin.ru

The Tc behavior in the all operations of extraction NPP SNF reprocessing is investigated traditionally at the RPA «V.G. Khlopin Radium Institute». There are possible different variants of Tc localization in the products of the 1st extraction cycle depending on the assigned tasks. In the RT-1 and Experimental Demonstration Center (EDC) schemes Tc is output in combination with Pu and Np. Hereafter Tc is output separately on the extraction and/or sedimentation refining operations [1]. In the UP-2 and UP-3 schemes Tc is output selectively on 80-85% before re-extraction of Pu. At the centrifugal extractors stands (CES) and mixer-settler extractors (MSE) on the model and real SNF solutions different variants of Tc output on 98% and more to any flows of the 1st cycle were tested experimentally.

Localization of technetium in the flow can be achieved in the scheme with a two-zone (strong - and sub-acid) ablution of actinides and Tc combined extract. It is necessary to optimize strongly acidic ablution for this. As a consequence, the concentration of nitric acid in the flow will increase [2]. Experiments on the «warm» model SNF solution of PWR-1000 and full-scale SNF solutions system simulator of PWR and AMB were carried out.

The possibility of Tc localization in the individual flow or in the Zr flow was shown. It was tested within the framework of the EDC basic technology, where extract acid ablution placed in the independent extraction block. In this approach the flow of stripping solution is increased and the nitric acid concentration in the Tc and Zr stripping flow should be about 4 mol/1 [3]. The increase of stripping flow rate leads to water-acid balance violation of the tritium-containing acid and water.

Localization of Tc in the barrier ablution uranium extract block is the optimum alternative. It is made after the Pu and Np re-extraction from the extract containing U and Tc by using «soft» reducing agent (acetohydroxamic acid (AHA) without hydrazine). The effect is achieved by using U(+4) and hydrazine as reducing agents with present of the AHA. It were tested in the CES extractor. In the future it is proposed to use an MSE extractor, where almost no aeration, which leading to partial oxidation of U(+4). MSE extractor allows to recovering U electrochemically in the stages of it.

It will be possible to make chemical or thermal denitration of condensed solution with the object to obtain mixed oxides if Tc is full separated from the Pu, Np and U stripping flows (separation $>10^3$). In this approach the operations of actinides sedimentation with precipitation ablutions and complex treatment of tail solutions is deleted from the process. The developed techniques are well combined with the selective Np(V) re-extraction which is made before reducing Pu re-extraction (process SuperPurex).

The full paper is available [4].

^{1.} Fedorov Yu.S., Zilberman B.Ya., Aloy A.S., etc. RCJ, 2010, V. 54, № 4, p. 12-24.

Kudinov A.S., Goletsky N.D., Zilberman B.Ya., etc. Rus. Atomic Energy, 2013, V. 114, № 5
 Anisimov O.P., Aloy A.S., Zilberman B.Ya., etc. VI international nuclear forum (St.Petersburg, 26-30.09.2011). The reports. CICE&T. SPb. 2011. p. 180-190.

^{4.} Goletskiy N.D., Zilberman B.Ya., Fedorov Yu.S., Kudinov A.S., et al. Radiokhimiya, 2014, Vol. 56, No. 5, pp. 427–438.

The 8th International Symposium on Technetium, dium and Rhenium: Science and Utilization September 29 -- October 3, 2014 La Baule - Pornichet, France

STATE ATOMIC ENERGY CORPORATION "ROSATOM"

THE WAYS OF TECHNETIUM AND NEPTUNIUM LOCALIZATION AT THE SNF REPROCESSING

N.D. Goletsky, B.Ya. Zilberman, Yu.S. Fedorov, A.S. Kudinov, A.A. Timoshuk, L.V. Sytniuk, E.A. Puzikov, S.A. Rodionov, A.P. Krinitsyn, V.I. Ryasantsev, D.V. Ryabkov, <u>T.A. Boytsova</u>

OJSC "V.G. Khlopin Radium Institute" Russia, S.-Petersburg, 2-nd Murinskiy prospect 28 goletsky@khlopin.ru

Classical flowsheet for reprocessing SNF

The negative influence of Tc and Np

The negative influence of technetium on the SNF reprocessing (Purex process)

- 1) Tc is a catalyst in hydrazine oxidation by the nitric acid;
- 2) Tc hinders the process of uranium and plutonium reduction separation;
- 3) Strictly limited Tc content in the final products of SNF reprocessing due to its oxide volatility: U & Pu purification factor from Tc should be about 1000.

The negative influence of Neptunium on the SNF reprocessing (Purex process)

- 1) Strictly limited Np content in the final products of SNF reprocessing;
- 2) Due to the low distribution coefficients, Np distributes between all streams in the first extraction cycle.

The localization of technetium should be considered as a complex task, taking into account Tc co-extraction with U and Zr.

At the same time Np distribution should be also considered, because joint Pu and Np strip might be suitable only for fast reactor fuel preparation, while for thermal reactor Pu and Np separation is required.

The goal of this work was to consider different variants of SNF reprocessing flowsheets which allow to separate and localize in any products of the first extraction cycle.

Joint Pu, Np and Tc stripping (RT-1 plant, PA «Mayak»)

(R)

Pu and Np separation from Tc (as well as Pu/Np partitioning) requires additional purification cycle.

Tc withdrawal to the raffinate (RT-1)

Processing of simulate SNF AMB (OM-9) and VVER-440 mixture in a ratio 1:3

Droduct	HNO mol/l	Concentration of main components							
Product	HNO_3 , HOI/L	U, g/L	Pu, mg/L	Np, mg/L	Tc, mg/L	Zr, mg/L	Mo, g/L	Mg, g/L	
Feed	4,4	230	30	350	300	1000	5,0	6,0	
Raffinate	3,9	<1	<0,5	-	170	560	2,8	3,4	
U, Pu, Np solvent prod.	-	85	10	130	<2	<5	-	-	

Processing of VVER-1000 "hot" simulate solution

Droduct	HNO mol/l		Relative co		Su Dall			
Product	HNO_3 , HOI/L	U	Pu	Np	Тс	Мо	Ζα, Ινιδη/Γ	Ζ Ϋ, ΒΥ/L
Feed	3,2	100	100	100	100	100	3,3*10 ⁴	1*10 ⁴
Raffinate	3,7	<0,01	<0,1	<1	>99,9	99,9	600	3,4
U, Pu, Np solvent prod.	-	>99,9	>99,9	>99	<0,1	<0,1	9,9*10 ³	2

Np withdrawal to the raffinate (RT-1) @

🔮 Joint Pu and Tc stripping (project of RT-1 upgrade) 🔞

Joint Pu, Np and Tc stripping (Simplified Purex 1) 1st extraction cycle flowsheet of Experimental Demonstration Centre (EDC)

Tc stripping efficiency in the centrifugal contactors was only 90%, and the rest slipped to the barrier block.

R

	Concei	ntratio	on of m	ain co	ompon	ents
Product	HNO ₃ , mol/L	U, g/L	Pu, mg/L	Np, mg/	Tc, mg/L	Zr, mg/
	-		•••	L		L
Feed	19	550	7000	420	660	190
recu	1,5	550	/000	420	000	0
Raffinate	0,7	0,1	1	1	10	200
7r and T strin	2.2	4	2		40	310
zr anu i strip	2,3	T	2	4	40	0
U, Pu, Np, Tc solv. prod.	-	94	36	50	40	0
u, Np, Tc strip	0,7	0,04	390	560	380	-
U solvent product	-	87	<0,1	<1	~5	-
Barrier waste	0,9	0,1	0,2	~1	35	-
U product	-	79	<0,2	<1	<0,1	-

Su MRa/I	Feed	Pu, Np, Tc strip	U product		
2γ, іνі Бq/L	3,1E+6	25	0,01/4 (²³⁷ U)		

Patents RU:2012075 (1994); 2454741 (2012); 2454742 (2012)

Tc stripping in the barrier unit (Simplified Purex 2)

It is possible to improve the purification of U from Tc and to obtain uranium product corresponding to sublimate plant standards on the Tc content using mixer-settlers (MSC) and electrochemical generation of U(+4).

R)

Tc localization with Zr and selective Np stripping (SuperPurex 2)

Real VVER-1000 (burn-up is 70 GW*day/ton) solution processing

			Main o	nents		
Product	mol/L	U, g/L	Pu, mg/L	Np, mg/L	Tc, mg/L	Zr
Feed	1,8	424	5700	400	270	1560
Raffinate	0,8	<0,01	3	1	<10	42
Zr, Tc, T strip	4,5	<0,01	5	3	80	540
Pu strip	1,3	<0,1	6100	<5	<2	-
Np strip	0,75	<0,01	10	490	<2	-
U product	0,2	60	<0,1	0,1	-	-

Droduct		
Product	Σα, GBq/L	Σγ, GBq/L
Feed	430	3800
Raffinate	470	3700
Zr, Tc, T strip	1,9	9,2
Pu strip	125	0,1
Np strip	0,25	0,01
U product	0,006	0,01 (²³⁷ U)

www.rosatom.ru

Droduct		Main components						
Product	HNO_3 , HOI/L	U, g/L	Pu, mg/L	Np, mg/L	Tc, mg/L	Zr, mg/L		
Feed	1,9	550	220	400	660	1900		
Raffinate	0,8	<0,01	<0,1	0,7	10	120		
Zr, Np, T strip	1,8	<0,01	0,3	360	60	2600		
Pu strip	0,8	<0,01	312	80	1,2	<20		
Tc strip	0,8	0,12	1,8	2,7	630	-		
U product	0,08	72	<0,01	<0,1	0,04	-		

Summary table of checked variants of technetium and neptunium localization in the first extraction cycle

Duoduot		Flowsheet variant							
Product		RT-1				Purex	SuperPurex		Remix
Variant	№ 1	№ 2	№ 3*	№ 4	№ 1	<u>№</u> 2	№ 1**	№ 2	№ 1
Number of units	4	4	5	5	6	6	6	6	6
Raffinate	Zr	Zr+Tc	Np, Zr, (Tc)	Zr	-	-	-	-	-
Strip 1	-	-	Тс	-	Zr	Zr	Zr+Tc	Zr+Tc	Zr+Np
Strip 2	Pu+Np+Tc	Pu+Np	Pu	Pu, Tc	Pu+Np+Tc	Pu+Np	Np	Pu	Pu
Strip 3	-	-	-	Np	Barrier	Тс	Pu+(U)	Np	Тс
U product	U	U	U	U	U	U	U	U	U
Carbonate waste			Co	ntains	no main co	mponents	-		
Kind of MOX fuel							-	For fast	For fast
that can be prepared		For fast	_		_	For fast	FOr thermal	and	and
from the obtained		reactors	-	-	-	reactors	reactors	thermal	thermal
products								reactors	reactors

* - Zirconium molybdate precipitation in the U and Pu extraction unit;

****** - U product with Pu traces .

CONCLUSION

- Completely purification of actinide products from Technetium, and if it is necessary, from Neptunium, could be obtained by various ways within the 1st cycle with the use of six extraction units, changing the content and flowrate of stripping solutions.
- Among all tested flowsheets of SNF reprocessing today REMIX flowsheet was the most perspective due to its generality.

Thank you for your kind attention!

More details are given in the fresh paper:

N.D. Goletsky, B.Ya. Zilberman, Yu.S. Fedorov, A.S. Kudinov, A.A. Timoshuk, L.V. Sytniuk, E.A. Puzikov, S.A. Rodionov, A.P. Krinitsyn, V.I. Ryasantsev, D.V. Ryabkov. Ways of Technetium and Neptunium Localization in Extraction reprocessing of Spent Nuclear Fuel from Nuclear Power Plants. Radiochemistry, 2014, v. 56, No 5, p. 501 - 514

The change of exposure dose power of Uranium nitrate hexahydrate melt during the storage

The ²²⁸Th accumulation, as a daughter isotope of ²³²U, limits the time of regenerated uranium use and makes difficult it's enrichment with ²³⁵U. For the same reason (²³⁶Pu decay and, as a result, ²³²U formation) stored pluronium requires deep purification before it's re-fabrication into MOX-fuel for fast reactors.

www.rosatom.ru

101

1

The nature of the technetium volatile species formed during vitrification in borosilicate glass

Bradley Childs,^a Frederic Poineau,^a Kenneth R Czerwinski,^a and Alfred P Sattelberger^b

a Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.

b Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Lemont, IL 60439, USA.

The vitrification of sodium pertechenate into borosilicate glass was performed under air at 1100 °C. A glass with a composition similar to the one developed for vitrification of the low activity waste at the Hanford site was used. During the process, a red volatile species was observed above 600 °C. The nature of the red species was studied by XAFS spectroscopy. The EXAFS results indicate the environment of the absorbing atom to be constituted by 2.9(6) O atoms at 1.73(2) Å, 2.2(4) O atoms at 2.02(2) Å, and 0.8(2) O atoms at 2.18(2) Å. The results are consistent with the presence of a mononuclear species with a structure closely related to the one of TcO₃(OH)(H₂O)₂. The mechanism of formation of TcO₃(OH)(H₂O)₂ and the role of water on the nature of the volatile technetium species during vitrification were discussed.

The Nature of Technetium Volatile Species formed during Vitrification in Borosilicate Glass

By: Bradley C. Childs, Frederic Poineau, Ph.D., Alfred Sattelberger Ph.D., and Ken Czerwinski, Ph.D.

8th International Symposium on Technetium and Rhenium

Overview

- Introduction
- Experimental Methods
- Results
- Conclusion
- Future Work

Glass with Tc at 1100 °C under air

Applied and Fundamental Technetium Chemistry at UNLV

Chemistry relevant to the nuclear fuel cycle and radiopharmaceuticals -Separations and waste forms

Synthetic and coordination chemistry of ⁹⁹Tc -Metal-metal bonded compounds, binary halides, and oxides

U/Tc separation

Fundamental linked with applied chemistry Capabilities

Synthesis:

Ability to work with high activity: (mg to g of ⁹⁹Tc) glove box, Schlenk line, HEPA-filtered fume hoods <u>Characterization:</u> Spectroscopy: UV-Vis, IR, NMR, XRD & XAFS

Diffraction and First principles calculations

Tc laboratory at UNLV

Technetium

- ⁹⁹Tc is a fission product from ²³⁵U
 - $T^{1/2} = 2.13 \times 10^5$ years
 - $E_{\beta}^{-} = 294 \text{ keV}$
- Technetium has 9 oxidation states
 [+7 to -1]
- Pertechnetate (TcO₄⁻) anion mobile in environment
- High temperature conditions can affect retention (10 % 90 %) in glass
- Tc(VII) is volatile
 - TcO₂ sublime at 900 °C
 - $Tc_2 O_7$ boils at 311 °C
- Approximately 2 tons of ⁹⁹Tc produced from U.S. nuclear industry per year
- Stable waste form is needed
 - Alloys
 - Oxides

NH₄TcO₄ with TcO₂ Starting compound

5

Hanford Site

- Fit criteria (8) for site selection of Manhattan Project
- Primary site for production of plutonium
- Approximately 1500 kg of ⁹⁹Tc
- Tc (VII) dominate oxidation state

3

Introduction

- The Hanford Tank Waste Treatment and Immobilization Plant (WTP) plans to vitrify waste for disposal
 - Cold cap studies - Batch material goes from solid to liquid
 - Evaluate change in Tc speciation
 - Examined from 600 °C to 1100 °C
- Perform batch and glass synthesis with Tc
- Evaluate Tc speciation
- Main issue in process is Tc volatilization

¹Ian L. Pegg, Keith S. Matlack, and Isabelle S. Muller: Technetium Retention 7 During LAW Vitrification, DOE EM Waste Processing Technical Exchange 2010.

Experimental Methods

Synthesis of NaTcO₄

80°C, NH₄OH/H₂O₂/H₂O

9

- NH₄TcO₄ /TcO₂ NH₄TcO₄ added to Dowex 50WX4-100 and eluted in • water
 - 15 mL of HTcO₄ solution obtained
- Neutralized with 1.8 mL NaHCO₃
- Concentration determined by UV-Visible spectroscopy
- 0.171 M solution of NaTcO₄

Batch Preparation

Loading	Weight %	Melting Point
Al_2O_3	5.97	
B_2O_3	9.79	450-510 °C
CaO	2.46	
Fe ₂ O ₃	5.38	
MgO	1.45	
Na ₂ O	21.27	1132 °C
SiO ₂	44.50	1600-1725 °C
TiO ₂	1.37	
ZnO	3.43	
ZrO ₂	2.94	

Pt boat used for heating

¹Thomas May, Matlack k, Isabelle S. Muller, Innocent Joseph, and Ian Pegg: Improved Technetium Retention in Hanford LAW, Glass - Phase 1 Final Report Ref RPP-RPT-45887, Rev. 10

Tube Furnace Set Up

Lindberg Blue M Mini Mite M# TF55035A-1 Tube furnace max temp: 1100 °C

XAFS Sample Preparation

- 1% Tc by mass
- ANL XAS solid sample holders
- No boron nitride
- Samples placed in holders as solid
- Kapton placed over windows
- Experiment performed at the APS/ANL-12 BM

11
Results

Results EXAFS

Fitted k³-EXAFS (left) spectrum and Fourier transform (right) of the k³-weighted EXAFS spectrum of the red species. Experimental data in red and fit in black. Spectra was fit using structure

Structure was fit using Re_2O_7 ·2H₂0 model

Results

Scattering	C.N	Distance (Å)	s² (Ų)
Tc=O	2.9(6)	1.73(2)	0.0022
Tc-O	2.2(4)	2.02(2)	0.004
Tc-O	0.8(2)	2.18(2)	0.004

Table above EXAFS fit parameters obtained for the red volatile species. $\Delta E_0 = 0.07$ eV.

Proposed Formation of $TcO_3(OH)(H_2O)_2$

- TcO₃(OH) + 2 H₂O → TcO₃(OH)(H₂O)₂
 Tc transported as TcO₃(OH) in gas phase and condenses
- 1. $Tc(IV) + O_2 \rightarrow Tc_2O_7$ - $Tc_2O_7 + 3H_2O \rightarrow 2 TcO_3(OH)(H_2O)_2$ • Hydrolysis of Tc_2O_7
- 2. NaTcO₄ + $3H_2O \rightarrow TcO_3(OH)(H_2O)_2$ + NaOH - Hydrolysis of NaTcO₄
- 3. $2NaTcO_4 \rightarrow Na_2O+Tc_2O_7$
 - Thermal dehydration followed by hydrolysis

Conclusions and Future Work

- Vitrification of NaTcO4 into borosilicate glass performed under air at 1100 °C.
 - Red volatile species observed above 600 °C.
- XAFS results are consistent with TcO₃(OH)(H₂0)₂
- All reactions involve Tc(VII) species with water.
- Perform same synthesis under inert and dry atmosphere.

Acknowledgements

- Trevor Low and Julie Bertoia
- Tc Group
- UNLV Radiochemistry Program
- Improved Retention of Tc in LAW Glass, Pacific Northwest National Laboratory, DE-AC05-76RL01830
- Advanced Photon Source use was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

Questions?

Electrochemical studies of technetium-ruthenium and rhenium-ruthenium alloys in nitric acid: implications for the long term behavior of metallic technetium waste forms.

Romina Farmand¹, Frederic Poineau¹, Daniel J. Koury¹, David G. Kolman², Gordon D. Jarvinen³, and Kenneth R. Czerwinski¹.

 ¹ Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
 ² Materials Corrosion and Environmental Effects Laboratory, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
 ³ Seaborg Institute, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

In order to predict the durability of metallic technetium waste form, understanding of the corrosion properties of technetium metal is of importance. One parameter that needs to be considered in those predictions is the building of ruthenium that occurs from the decay of technetium. In this context, the corrosion behavior of technetium-ruthenium and rhenium-ruthenium alloys (rhenium was used as a technetium surrogate) alloys were studied in nitric acid. Technetium-ruthenium and rhenium-ruthenium alloys with various compositions were prepared and their corrosion behavior was studied by electrochemical methods in 1M HNO₃.

Dissolution potentials of the alloys were determined by linear voltammetry. Result shows that the dissolution potential of the alloys increase with the ruthenium content. In order to understand the dissolution mechanism, electrolysis experiments above the dissolution potential were performed; the corrosion products of the alloys were characterized on the surface of the electrodes by scanning electron microscopy and Energy dispersive X-ray spectroscopy and in solution by UV-visible spectroscopy and electrospray ionization mass spectrometry. The speciation of technetium, rhenium and ruthenium was studied after dissolution of the alloys at 1.2 V/ (Ag/AgCl). Results show the formation of permetalates for rhenium and technetium and RuO₄.

Electrochemical studies of rhenium-ruthenium alloys in nitric acid: implications for the long term behavior of metallic technetium waste forms

Romina Farmand

Outline

- I. Introduction
- II. Preparation & Characterization of Re-Ru alloys
- III. Preparation of Re-Ru Electrodes
- IV. Corrosion studies on Re-Ru & Tc-Ru Electrodes in Nitric Media
- V. Characterization of corrosion products
- VI. Conclusions
- VII.Future Work

Introduction

Background on Technetium

- ⁹⁹Tc is a major fission product of the nuclear industry(~6% ²³⁵U) *Every year in the U.S., about 2 tons of ⁹⁹Tc is produced *long half-life (t_{1/2} = 2.1.10⁵ a) and ⁹⁹Tc → ⁹⁹Ru + β⁻
- In the spent nuclear fuel, technetium is present as the metal and as an alloy with Mo, Ru, Rh, Pd ("epsilon-phases")
- After separation of ⁹⁹Tc from the spent fuel, ⁹⁹Tc is plan to be converted to the metal and incorporated into an alloy for long term storage in depository sites
- In the prediction of the long term behavior of the Tc-waste form, building of the Ruthenium from the radioactive beta decay of technetium needs to be considered
- Since Ru is more noble than Tc, Tc-Ru alloys should be more corrosion-resistance than pure Tc metal so study of the effect of Ru on the corrosion behavior of Tc is of importance

Binary Rhenium Ruthenium Alloys

- Re and Ru metals have been studied with metallic alloys

 * Electrochemical behavior of pure Re, Mo, Ru, Tc, Mo-Re alloy, Mo-Ru
 alloys were studied in nitric media¹
- Tc-Ru alloys were synthesized and characterized but no corrosion studies were performed^{5,3}
- In studies of electrochemical properties of binary alloys simulated epsilon-phases, Re is used as a surrogate for Tc

Goal: To prepare and analyze different compositions of Re-Ru & Tc-Ru alloys by Using electrochemical techniques for better understanding of the effect of Ruthenium on the corrosion behavior of Re & Tc metal

Experimental Method

Theoretical Pellet Weight (mg)		Theoretical w.t.% before SEM		Mean Experimental w.t.% After SEM		Repository Age (years)
Re	Ru	Re	Ru	Re	Ru	Re
250	0	100	0	100	0	0
242.5	7.5	98.35	1.65	97.99	2.01	11418
230	20	95.5	4.5	93.14	6.86	39150
190	55	86.7	13.3	80.57	19.43	112986
180	70	82.6	17.4	74.05	26.2	153339
0	100	64.8	35.2	52.52	47.48	300682
		0	100	0	100	None

- Mixture of Re and Ru powders with appropriate masses
- Mixture of powders transferred via a funnel to a 6 mm die
- ⋗ Used the pellet Presser to press the 6 mm die for 10 mins at 4 metric tons
- Arc-Melted the pellets 3X under a dynamic vacuum

and purge of H5 (95% Ar, ,5% H₂)
 •Re m.p. is 3182 ° C , Ru is 2334 ° C , Arc Temp is
 > 3000 ° C

Continued Experimental Method

- Re-Ru alloys were annealed in the MTI furnace at 1700 °C under H-5 for 12 hrs
- Re-Ru alloys were embedded on the resin epoxy
- The epoxy was grinded coarsely with 220 and then finely with 1200 Silica Carbide grits > * rinsed the epoxy with Methanol and Water
- The epoxy was polished with diamond abrasives ranging from 9 micron to 1 micron ⋗ * rinsed the epoxy with Methanol and Water
- Residues left after polishing on Re-Ru alloys were removed by ultra-sonic cleaner for Clear SEM imaging

Continued Experimental Method

Samples (mass mg)	Experimental Compositions Tc: Ru (at. %)	Decay time (years)
a (242.3)	97: 3	10000
b (229.1)	91.7: 8.3	25000
c (234.4)	77.8: 22.2	75000
d (224.4)	71.5: 28.5	100000
e (231.0)	49.8: 50.2	213000

- Mixture of Tc and Ru powders with appropriate masses in the fume hood
- Mixture of powders transferred via a funnel to a 6 mm die in the fume hood
- Used the pellet Presser to press the 6 mm die for 10 mins at 4 metric tons in the glove box
- Arc-Melted the pellets 3X under a dynamic vacuum and purge of H5 (95% Ar, ,5% H₂)

Arc-melted Tc-Ru alloys were annealed in the MTI furnace at 1700 °C under H-5 for 12 hrs

Characterization of Re-Ru alloys by EDX/SEM

SEM Images

The SEM analysis of Re-Ru alloys with other compositions confirmed the homogeneity of the composition

Re and Ru are isostructural, having a hexagonal close packed structure (hcp) and form complete solid solution with a single phase

EDX Analysis

Preparation of Re-Ru Electrodes

- Diamond Saw machine was use to take each of Re-Ru beads out of the epoxy
- Each Re-Ru pellet was connected to a Copper wire (1mm width) with silver epoxy, mounted in a plastic straw (D= 6.25 mm) sealed with a temperature/acid/base epoxy resin
- The electrodes were polished with 220 girt Silican Carbide paper and washed with
- > distilled water and methanol
- The resistance of the electrodes were measured to be 0.00 Ω

Preparation of Tc-Ru Electrodes

- Each Tc-Ru pellet was connected to a Copper wire (1mm width) with silver epoxy, mounted in a plastic straw (D= 6.25 mm) sealed with a temperature/acid/base epoxy resin in the fume hood
- > The electrodes were polished with 220 girt Silican Carbide paper and washed with
- distilled water and methanol in the fume hood
 The resistance of the electrodes users recovered to be 0.00.0
- The resistance of the electrodes were measured to be 0.00 $\boldsymbol{\Omega}$

Preparation of Re-Ru Electrodes

compositions of Re-Ru electrodes determined by EDX spectroscopy

Samples (mass mg)	Experimental Compositions Re: Ru (at. %)
a (233.0)	96.3: 3.7
b (242.1)	87.9: 12.1
c (236.8)	69.0: 31.0
d (239.6)	60.5: 39.5
e (231.6)	37.3: 62.7

 Re-Ru electrodes were prepared and their corrosion behavior investigated in nitric acid by electrochemical techniques

Electrochemical Set up

Three electrode configuration : I.Reference Electrode: Ag/AgCl KCl (1M) [E=+0.235 V/NEH] II.Working Electrode: metal or Re-Ru alloy III.Auxiliary Electrode: Platinum wire (0.5 mm diameter)

- Electrochemical Cell (volume = 9 ml)
- > The Electrodes were connected to a potentiostat controlled by a computer (software CHI660b)
- Electrochemical Techniques used :
 I. Bulk Electrolysis
 II. Linear Sweep Voltammetry

- > The voltammograms of samples a, b and c are similar to that of Re metal and their currents Increase continously with increasing potential
- > The voltammograms of samples d and e are similar to that of Ru metal (plateau of the current Between 0.6 1 V

Linear Sweep Voltammetry

- The voltammograms of samples a, b are similar to that of Tc metal and their currents Increase continously with increasing potential
- ➤ The voltammograms of samples c, d and e are similar to that of Ru metal (plateau of the curren Between 0.6 1 V

Linear Sweep Voltammetry

- Dissolution potentials as a function of Ru content in the electrodes
- E_{dis} increases with the Ru content : better corrosion resistance of Re-Ru & Tc-Ru alloys ; Ru has an effect on the corrosion potential of the Re-Ru & Tc-Ru electrodes
- Tc-Ru electrodes are more corrosion resistant than Re-Ru electrodes in 1 M nitric acid (with similar at.% compositions)

Corrosion Mechanism of Re Metal in 1 M HNO₃

Bulk Electrolysis Technique was used to study the corrosion mechanism of Re metal at fixed potential of 0.750 V Corrosion products characterization in solution (by ESI/MS)

Corrosion products characterization in solid (by SEM/EDX)

Corrosion Mechanism of Ru Metal

630

in 1 M HNO₃

Bulk Electrolysis Technique was used to study the corrosion mechanism of Ru metal at fixed potential of 1.2 V Corrosion products characterization in solution (by UV-Vis)

Corrosion products characterization in solid (by SEM/EDX)

Eh-pH Diagram of Ru in non-Complexing media⁴

- For samples a, b and c, no gas evolution was observed at the electrode and the spectra exhibit a band at 500 nm which is probably due to presence of Ru(IV) polymeric species³
- For samples d and e, gas evolution was observed at the electrode and the spectra exhibit a band at 380 nm which is due to the presence of RuO_4^{-1}

Corrosion Mechanism of Re-Ru alloys in 1 M HNO₃

Corrosion products characterization in solution (by ESI/MS)

ESI/MS spectra of the solutions after electrolysis of sample b and sample e at 1.2 V in 1 M ${\rm HNO}_{\rm 3}$

> ESI/MS spectra of solutions for samples b and e exhibit a peak at M = 251 which is characteristic of ReO_4^-

Corrosion Mechanism of Re-Ru alloys in 1 M HNO₃

Corrosion products characterization in solid (by SEM/EDX)

SEM images & EDX spectra of the solutions after electrolysis of sample b (on the top) and sample e (on the bottom) at 1.2 V in 1 M $\rm HNO_3$

before Bulk Electrolysis after Bulk Electrolysis

Conclusion

Linear Sweep Voltammetry

As Ru content increases in the Re-Ru and Tc-Ru alloys, dissolution potential of the alloys increase

Corrosion Mechanism of Re-Ru alloys in 1 M HNO₃ at 1.2 V

➤ For Re, the speciation is dominated by ReO4⁻

⋗

```
For Ru,, the speciation is dependent on the composition of the alloys and oxygen evolution at the electrode;

*For alloys with Ru content below 31 at. %, no gas evolution was observed and only Ru (IV) species was detected

*For alloys with Ru content above 31 at. %, gas evolution was observed and RuO<sub>4</sub> was detected
```

- > An oxide Layer was detected for alloys with Ru content above 31 at. %
- Similar behavior should be observed in Tc-Ru alloys in the nitric media

Future Work

- Electrochemical study of Tc-Ru alloys
- Synthesis and electrochemical study of epsilon phase (Tc-Mo-Ru-Pd-Rh alloys)

References

[1] A. Maslennikov A. B Fourest. F David and M Masson "Electrochemical dissolution of simulated "white inclusions" in nitric acid. Linear Voltammetry study with Mo, Re, Ru metals and their alloys electrode," *Radio-chem Acta* 91:41-425 (2003)

[2] E. Mausolf E. D. Kolman. G. Jarvinen. F. Poineau. K. Czerwinski, Los Alamos National Laboratory (2010)

[3] M. Ferrier. F. Poineau. G. Jarvinen and K. Czerwinski , "Chemical and electrochemical behavior of metallic technitium in acidic media," J. Radioanal Nucl Chem DOI 10.1007 (2013)

[4] M.J.N. Pourbaix, J.V. Muylder and N. de Zoubov, "Electrochemical Properties of the Platinum Metals", *Platinum Metals Rev.*, **3**, 100-106 (1959).

[5] Y. Shirasu, K. Minato, "Characterization of Technetium-Ruthenium Alloys for Transmutation of Technetium Metal," J. American Nuclear Society, 1340-1343 (1999).

Acknowlegement

Dr. Kenneth Czerwinski Dr. Frederic Poineau Dr. Gordon Jarvinen & Dr. Dave Kolman (LANL) Dr. Dan Koury Dr. Erik Johnstone Julie Bertoia and Trevor Low for Radiation Safety

Review on the Tc Chemistry at SUBATECH in Inorganic Media (Chloride, Sulfate, Carbonate) with or without Radiation Effect

J.Vandenborre¹, M.Fattahi¹

¹SUBATECH, UMR 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes 4, Rue Alfred Kastler, La chantrerie BP 20722, 44307 Nantes cedex 3, France E-mail: Fattahi@subatech.in2p3.fr

Technetium is important as a long half-life multivalent radioelement within the framework of the nuclear waste storage especially in underground geological sites. So, the safety studies require the knowledge of the redox and of the chemical properties of this element in order to model its geochemical behavior in the environment.

In a first part, the results presented here [1-5], after 15 years of research studies, deal with the redox behavior and the speciation of Tc in chloride, sulfate and carbonate media in order to perform the speciation during the reduction process of Tc(VII) in Tc(V), Tc(IV) and Tc(III) either by chemical/electrochemical methods either by radiolytic process induced by α , γ irradiations. The speciation of Tc in solution was carried out by complementary techniques such as UV-VIS Spectrophotometry, Raman Spectroscopy and X-rays Absorption Spectroscopy.

In chloride medium, the Tc(IV) species produced by dissolving K₂TcCl₆(s) was characterized as hydrolysed TcCl₆²⁻: TcCl₅(H₂O)⁻ or TcCl₄(H₂O)₂ [1]. Kinetic studies, in chloride medium, of the TcCl₅(H₂O)⁻ species condensation leads to the characterization of a linear structure such as Tc^{IV}-O-Tc^{IV} [3]. The formula proposed for this species is Tc₂OCl₁₀⁴⁻ and can give Tc_n^{IV}O_y^{(4n-2y)+} by a cyclisation process [3]. In chloride medium, TcO₂ lead to the formation of Tc₂OCl₁₀⁴⁻ at pH = 0.3 and Tc_n^{IV}O_y^{(4n-2y)+} at pH = 1.5 [3]. The electrochemical reduction of TcO₄⁻ in carbonate medium leads to amorphous oxides or carbonate complexes of Tc(IV) and/or Tc(III) [1]. We have attempted to prepare sulfate compounds of Tc using ligands exchange and reduction of TcO₄⁻ in sulfate medium. For pH < 4, one reduced species of Tc is formed in solution and was characterized as a small size oxo or hydroxo polynuclear complex Tc_n^{IV}O_y^{(4n-2y)+} which can be considered as a precursor of TcO₂.xH₂O for pH > 3 [4].

In a second part, the stability of the Tc species under α or γ irradiation has been studied: Under γ irradiation, the Tc(VII) is stable but reduced in Tc(IV) in the presence of formate when the carbonate complex of Tc(IV) is oxidized in Tc(VII) [1]. However, TcO₄⁻ is formed by γ radiolysis of TcO₂.xH₂O and Tc_n^{IV}O_y^{(4n-2y)+} under N₂O atmosphere with a strongly increased of the solubility [4]. Moreover, under α radiation the Tc_n^{IV}O_y^{(4n-2y)+} species is oxidized to TcO₄⁻ [3]. The decomposition of TcCl₆²⁻ by γ radiolysis was studied and did not lead straightly to the formation of Tc(VII) but the ligand exchange between Cl⁻ and H₂O is enhanced [4]. In concentrated H₂SO₄ (\geq 12 M), α -radiolysis experiments of Tc(VII) were performed in order to study the radiolytic behaviour of Tc(VII). XANES studies show that radiolytic reduction of Tc(VII) leads to the formation of Tc(V)-Tc(VII) mixture in H₂SO₄ 13 M and just Tc(V) in 18 M of H₂SO₄. The analysis of EXAFS spectra is consistent with the formation of [TcO(HSO₄)₃(H₂O)₂] and [TcO(HSO₄)₃(SO₄)(OH)]⁻ species at 18 M of H₂SO₄ [2].

Figure 1 present the summary of these studies in the chloride, sulfate and carbonate media for reduction processes under irradiation or not.

Subatech

Review on the Tc Chemistry at SUBATECH in Inorganic Media (Chloride, Carbonate) with Radiation Effect

> <u>J.Vandenborre</u>, M.Fattahi

Thank you for your attention

• C TOPIC

139

Figure 1: Graphical summarize of the Tc speciation work in SUBATECH in chloride, sulfate and carbonate media under irradiation

[1]. Ben Saïd, K., Contribution à l'étude des réactions d'oxydoréduction et à la spéciation du technétium en milieu chloré et carbonaté., in Ph.D. 1999, Université de Nantes: Nantes.

[2]. Denden, I., *La chimie du Tc en milieux très acides, effet des rayonnements alpha et gamma* in *Ph.D.* 2013, Université de Nantes.

[3]. Poineau, F., *Mécanismes de condensation du Technétium tétravalent en milieu chloré*, in *Ph.D.* 2004, Université de Nantes: Nantes.

[4]. Vichot, L., Spéciation du technétium en milieu chloro-sulfate. Contribution à l'étude des effets de la radiolyse α , in *Ph.D.* 2001, Université de Nantes: Nantes, France.

[5]. Ghalei, M., *Reduction of Mn, Tc, Re species in highly concentrated carbonate media by electrochemistry and radiolysis*, in *Ph.D.* started in 2012, Université de Nantes: Nantes.

Speciation of technetium in acidic media (CF₃SO₃H, H₂SO₄): Effect of alpha radiations

Ibtihel Denden, Jérôme Roques, Frédéric Poineau, Massoud Fattahi

This project focuses on the fundamental study of technetium speciation in highly acidic medium. The behaviour of technetium trifluoromethanesulfonic acid was investigated first in the absence, then in the presence of α irradiation. Given these two different conditions, spectrophotometric results of Tc(VII) reduction are similar. XAS analysis indicates the formation of a cyclic dimer of Tc(IV) complexed to triflate ligands and formulated as Tc₂O₂(CF₃SO₃)₄(H₂O)₄. This compound is linearized to Tc^{IV}-O-Tc^{IV} with the increase of HTFMS concentration. At high concentration of HTFMS +98% (11.15 M), the protonated species TcO₃(OH)(H₂O)₂ which is formed in the absence of external ionizing radiations, is reduced to the (V) oxidation state under α irradiation. Structural characterization by EXAFS spectroscopy and DFT calculations suggests the formation of monomer species of Tc(V)-triflate complexes where [OTc(F₃CSO₃)₂(H₂O)₂]⁺ and [OTc(F₃CSO₃)₂(OH)₂]⁻ compounds were proposed.

α-radiolysis experiments of Tc(VII) were performed in order to compare the radiolytic behaviour of Tc(VII) in both comparable media HTFMS and H₂SO₄ (C_{H2SO4} ≥ 12 M). XANES studies show that radiolytic reduction of Tc(VII) leads to the formation of Tc(V)/Tc(VII) mixture in H₂SO₄ 13 M and Tc(V) in 18 M of H₂SO₄. The analysis of EXAFS spectra is consistent with the formation of [TcO(HSO₄)₃(H₂O)₂] and [TcO(HSO₄)₃(H₂O)(OH)]⁻ monomer complexes in H₂SO₄ 13 M and [Tc(HSO₄)₃(SO₄)(OH)]⁻ species at 18 M of H₂SO₄.

Keywords: technetium, HTFMS, H_2SO_4 , α -radiolysis, speciation, XAS (XANES and EXAFS), DFT.

Technetium in acidic media

♦ Electroreduction and polymerization of technetium in acidic media (EXP: H_2SO_4 ^[Vichot-2001], CF_3SO_3H ^[Vongsouthi-2009]→ formation de $Tc_nO_y^{(4n-2y)+}$).

& γ rays: instability of reduced technetium species (EXP: TcCl₆²⁻, Tc₂OCl₁₀⁴⁻, Tc_nO_y^{(4n-2y)+} → Oxidation to TcO₄⁻ [Poineau-2004] [Vichot-2001]).

 $\diamond \alpha$ particles: the chemistry of Tc in acidic media under alpha irradiation is still unknown.

2

Acidic media

Trifluoromethanesulfonic acid/triflic acid (CF₃SO₃H , HTFMS)

- ➡ Important catalyst in organic syntheses (Exp: phenol alkylation) and polymerization reactions (Exp: polyethers, polyols and silicones syntheses).
- → Very weak complexing agent.
- **→** Stability toward oxidation and reduction reactions.

Sulfuric acid (H₂SO₄)

BEHAVIOUR OF TECHNETIUM IN TRIFLIC ACID MEDIA IN THE ABSENCE OF EXTERNAL IRRADIATION

Spectrophotometric instability of TcO₄⁻ in HTFMS

- Stability of TcO₄- in HTFMS< 4M.
- ▶ Formation of new species of Tc in HTFMS> 4 M.

<u>First approach:</u> Partial thermal decomposition of HTFMS

CO₂, CO, SO₂, F₂CO, CS₂, HF, HCO₃⁻, H₂SO₄⁻, HSO₃⁻.

<u>Second approach:</u> Hydrolysis of HTFMS by nucleophilic attack of water molecules on the C atoms:

 $H_2\ddot{O} + \dot{C}F_3 - SO_3H \longrightarrow HOCF_3 + H_2SO_3$

fppt.com		

Behaviour of technetium in acidic media under $\,\alpha$ irradiation $CF_{3}SO_{3}H$

13

14

Radiolysis of HTFMS: H₂O₂ measurements (Ti(IV) complexation)

Behaviour of technetium in acidic media under α irradiation CF_3SO_3H

λ	CANES analysi	s
Medium	Oxidation degree	Energy shift (eV)
H_2SO_4 (1 M) TcO ₄ ⁻ (Reference)	VII	0
HTFMS 11,15 M non irradiated (TcO ₃ (OH)(H ₂ O) ₂)	VII	-3.21
TcO ₂ .xH ₂ O	IV	-6,75
Tc _n O _y ^{(4n-2y)+}	IV	-6,4
HTFMS 5 M	IV	-5,92
HTFMS 7 M	IV	-5,37
HTFMS 8 M	IV	-5,37
[Tc(ArN) ₃] ₂ Hg	v	-4,61
HTFMS 9M	IV-V	-4,06
HTFMS 11,15 M	ν	-4,34
H ₂ SO ₄ 13 M	V –VII mixture	-3,3
H ₂ SO ₄ 18 M	ν	-4

fppt.com

Adjustment of (k3-weighed) EXAFS spectra HTFMS 5 M 6 Tc-O exp. 5 -th. Tc-O 4 Ц. 3 Tc--Tc Tc--O 2 -S c 1 0 -1.5 $^{2}_{R+\Delta R}(\text{\AA})$ 0 0.5 1 2.5 3 3.5 4 Ν R(Å) σ ²(Ų) Bond χ² Tc-O 2,29 1,81 0,0023 15,44 0,0047 Tc-O 4,34 2,02 Tc--Tc (µ-O)₂ 0,87 2,81 0,0046 R factor Tc - - S 2,17 3,33 0,0044 0,0009 Tc - - O 3,81 0,003 6,23 fppt.com

Adjustment of (k3-weighed) EXAFS spectra

Local structure	Scattering	C.N (Å)	DFT(Å)
[Tc ₂ O ₂ (H ₂ O) ₄ (HTFMS) ₄]	Tc-O	1,81	1,75
	Tc-O	2,02	2,02→2,21
	TcTc (µ-O) ₂	2,81	3,05
	TcS	3,33	3,23-3,27
	TcO	3,81	3,62→3,88

RADIOLYSIS GROUP: Pr. M. FATTAHI, G. BLAIN, R. ESSEHLI

ubatec

Study induced oxidation/reduction of Tc in carbonate media by α and γ radiolysis

<u>M.Ghalei</u>⁽¹⁾, J.Vandenborre^{(1),} G. Blain⁽¹⁾, F.Haddad^(1,2), M. Fattahi-Vanani⁽¹⁾

⁽¹⁾Laboratoire SUBATECH – Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes 4 rue Alfred Kastler44307 Nantes cedex 3 France

⁽²⁾ARRONAX cyclotron – 1, rue Arronax – CS 10112, 44817 Saint Herblain cedex – France E-mail: <u>mohammad.ghalei@subatech.in2p3.fr</u>

Technetium is a radioelement with a long half life time of 211000 years that present considerable interest in various contexts like nuclear medicine, reprocessing and storage of nuclear fuel. Understanding the chemistry of this transient element is essential for optimizing the extraction of fission products in reprocessing of used nuclear fuel [1]. Another reason that makes Tc study important is, the mobility of Tc based on its oxidation state. In fact, some species of technetium considered very mobile hence knowing its chemistry is important [2]. The aim of this study is using α and γ radiolysis for initiating and controlling the oxidation/reduction mechanism of Tc and its analogous (Mn and Re) in highly concentrated carbonate media. This study emphasize using one part of ARRONAX cyclotron which provide α high energy beam (E_{α} = 67 MeV, TEL = 22,7 keV. μ m⁻¹) and secondly using γ irradiator at the same site in order to cover a wide range of LET for this oxidation/reduction experiments under irradiation. In first step of this work, electrochemistry experiments were performed in different Mn and carbonate concentration under controlled atmosphere to obtain optimum experimental conditions for electro-reduction. Second experiment was study the speciation of Mn by radiolysis that consist two parts; first, reduction of Mn(VII) and second, oxidation of Mn(II), each part was performed under α and γ irradiation. Spectra from in-situ UV-Vis spectrophotometer as a species monitoring tool, show the same characterizing spectrum as it was observed by electrochemical reduction. Reduction of Mn(VII) as a function of absorbed dose, shows that the reduction rate of y radiolysis is 6 times higher than α radiolysis even the dose rate of α radiolysis is 1000 times more than γ one (G γ (-Mn(VII)) = 1,54 × 10⁻⁷ mol.J⁻¹, G α (-Mn(VII)) = 2,76 × 10^{-8} mol.J⁻¹, γ dose rate = 2,75 ± 0,40 Gy.min⁻¹, α dose rate = 3700 Gy.min⁻¹) that indicate the mechanism of reduction of Mn is radical not molecular one. Moreover the H₂ yield was measured and it is higher in case of α irradiation(Gy(H₂) = 2,61 × 10⁻⁸ mol.J¹ et G α (H₂) = 5,4 × 10⁻⁸ mol.J⁻¹). The H₂ yield of soul carbonate is higher than Mn reducing system which means that some radical species, especially hydrogen radical participating in reduction of Mn(VII) or in intermediate reactions (Gy(H₂) = 2,89 × 10⁻⁸ mol.J⁻¹ et G α (H₂) = 5,73 × 10⁻⁸ mol.J⁻¹). Also at the end of each radiolysis experiment, it observed that there is colloid precipitation of Mn_xCO_v that is quantifying by EPR, XRD, XPS and ATR-IR as a complementary data and identifying different oxidation state under irradiation. In next step, the same protocol (electrochemistry and radiolysis) was performed on Tc and Tc(IV) and (III) was observed. The products of oxidation/reduction of Tc will be characterized by using EXAFS as complimentary of ab initio DFT simulation. At the end, pulse radiolysis coupled with UV-Vis spectrophotometer in situ can provide the information about transient species (<1µs) for both solutions of Mn and Tc.

[1]. Nosco, D.L., Beaty-Nosco, J.A., 1999. Chemistry of technetium radiopharmaceuticals 1: Chemistry behind the development of technetium-99m compounds to determine kidney function. Coord. Chem. Rev. 184, 91-123.

[2]. Jenkinson, S.B., McCubbin, D., Kennedy, P.H.W., Dewar, A., Bonfield, R., Leonard, K.S., 2013. An estimate of the inventory of technetium-99 in the sub-tidal sediments of the Irish Sea. Journal of Environmental Radioactivity.

1

Study induced oxidation/reduction of M (Tc, Re & Mn) in carbonate media by α and γ irradiation

Ph.D (2nd year)

Mohammad GHALEI

Director: Massoud FATTAHI

Co-director: Johan VANDENBORRE

2012-2015

Technetium was named technikos, a greek word that means "artificial". Technetium can not be find naturally in earth crust and it was the first element which was produced artificially .

 ^{99}Tc is ß emitter (E_{max} = 294 keV, $T_{1/2}$ = 2 \times 10 5 years)

Working on non-radioactive elements with close chemical properties of Tc

Radiolysis : decomposition of materials under irradiation

но.		Oxidant	HO' + $M^{n+} \longrightarrow M^{n+1}$
H' et e⁻ _(s)	\rightarrow	Reducter	$e_{(s)}^{-} + M^{n+} \longrightarrow M^{n-1}$

Adding scavenger for choosing interested media

Radiolysis : decomposition of materials under irradiation

α radiolysis (1/2)

Cyclotron Arronax α beam provider at high energy (E_{α} =67MeV, LET = 22,7 keV.µm⁻¹) Dose rate: 3800 Gy.min⁻¹ Time: 0,5min-15min

Radiolyse <mark>α (2/2</mark>)

1) Reduction = consummation of H₂ and oxidation = production of H₂ thus confirmation radical mechanism

5,4 × 10⁻⁸

7,7 × 10⁻⁸

6,0 × 10⁻⁸

2) In comparison to water, carbonate media has a small impact

5,7 × 10⁻⁸

3) Catalytic role of Mn(II) on production of H_2

α

F. Crumière, Etudes de l'effet des rayonnements ionisants sur l'eau : Rendements radiolytiques de l'hydrogène moléculaire, in: Ph.D., Université de Nantes, Nantes, 2012.

mol.L ⁻¹ .Gy ⁻¹	Carbonate	Re(VII)	Re(II)
Gamma	2,89 × 10 ⁻⁸	4,25 × 10 ⁻⁸	1,22 × 10 ⁻⁸
Alpha	5,73 × 10 ⁻⁸		5,70 × 10 ⁻⁸

Re radiolysis

Conclusion Mn & Re

- >Mn can be oxidized and reduced in the same media under irradiation
- ➤The final product of Mn is oxo-carbonate complex
- ≻The oxidation-reduction is radical
- >The final product of Mn has resistance against extra oxidation/reduction
- ≻Re can be just oxidize in carbonate media under irradiation
- ≻For reduction of Re under irradiation, adding formate is necessary
- > Final product of reduction of Re is oxidized in contact with air

Chemistry of Tc

Objective : Study chemistry and complexation of Tc in carbonate media

- ≻Polymeric or monomeric product ?!
- Carbonate or oxo-carbonate complex ?!

≻Mechanism?

Tools :

➤Electrochemistry

➤Radiolysis

Tc radiolysis

Can not be reduced in carbonate media so adding formate is necessary

> In solution with $[CO_3^{2-}] < 1M$, TcO₂ will be dominant product

> The higher carbonate concentration, the more stable final product against re-oxidation

Radiolysis : decomposition of materials under irradiation

- Electron pulse radiolysis, LCP , Orsay
- > α pulse radiolysis, Cyclotron Arronax

Electro	n pulse rac	liolysis	
$\begin{array}{c} {\rm CO}_2+{\rm H}_2{\rm O} \\ {\rm HCO}_5 + {\rm H}^+ \\ {\rm HCO}_5 \\ {\rm CO}_2^- + {\rm H}^+ \\ {\rm CO}_2^- + {\rm e}_{a_1} \\ {\rm HCO}_5^- + {\rm H}^- \\ {\rm HCO}_5^- + {\rm H}^- \\ {\rm OH}^+ + {\rm HCO}_5^- \\ {\rm OH}^+ + {\rm HCO}_5^- \\ {\rm CO}_4^- + {\rm H}_2{\rm O}_2 \\ {\rm CO}_5^- + {\rm CO}_5^- \\ {\rm CO}_5^- + {\rm H}_2{\rm O}_2 \\ {\rm CO}_5^- + {\rm H}_2{\rm O}_2 \\ {\rm CO}_5^- + {\rm CO}_5^- \\ {\rm CO}_5^- + {\rm CO}_5^- \\ {\rm CO}_5^- + {\rm H}_2{\rm O}_2 \end{array}$	$\begin{array}{l} HCO_{5}^{-}+H^{+}\\ CO_{2}^{-}+H_{2}O\\ CO_{7}^{-}+H^{+}\\ HCO_{7}^{-}\\ CO_{7}^{-}-CO_{7}^{-}+H_{2}\\ CO_{7}^{-}+H_{2}\\ CO_{7}^{-}+HO_{1}^{-}+OH^{-}\\ CO_{4}^{-}+CO_{2}\\ CO_{7}^{-}+OH^{-}\\ CO_{4}^{-}+HO_{2}^{-}+H^{+}\\ CO_{4}^{-}+HO_{7}^{-}+H^{+}\\ CO_{4}^{-}+O_{7}^{-}+H^{+}\\ CO_{4}^{-}+O_{7}^{-}+H^{+}\\ CO_{4}^{-}+O_{7}^{-}+H^{+}\\ CO_{4}^{-}+O_{2}^{-}+HO_{7}^{-}\\ HCOO^{-}+OH^{-}\\ CO_{7}^{-}+O_{1}^{-}\\ HCOO^{-}+OH^{-}\\ CO_{7}^{-}+O_{1}^{-}\\ HCOO^{-}+OH^{-}\\ CO_{7}^{-}+O_{1}^{-}\\ HCOO^{-}+OH^{-}\\ CO_{7}^{-}+O_{1}^{-}\\ HCOO^{-}+OH^{-}\\ HCOO^{-}+OH^{-}\\ CO_{7}^{-}+OH^{-}\\ HCOO^{-}+OH^{-}\\ CO_{7}^{-}+OH^{-}\\ HCOO^{-}+OH^{-}\\ HCOO^{-$	$\begin{array}{c} 2.000 \times 10^4 \\ 5.000 \times 10^{10} \\ 2.000 \\ 5.000 \times 10^{10} \\ 7.700 \times 10^9 \\ 3.900 \times 10^5 \\ 4.400 \times 10^4 \\ 8.500 \times 10^6 \\ 3.900 \times 10^8 \\ 7.000 \times 10^1 \\ 1.000 \times 10^7 \\ 1.000 \times 10^5 \\ 1.000 \times 10^8 \\ 9.000 \times 10^8 \\ 9.000 \times 10^8 \\ 9.000 \times 10^8 \\ 9.000 \times 10^8 \\ 5.000 \times 10^8 \\ 9.000 \times 10^8 \\ 5.000 \times 10^8 \\ $	f_{1}^{45} f_{2}^{40} $f_{$
$\frac{CO_{2}^{} + HCO_{3}^{}}{CO_{3}^{} + HCOO^{-}}$ $OH^{+} + HCOO^{}$ $H^{+} + HCOO^{}$ $OH^{+} + C_{2}O_{4}^{2}$ $[CO_{3}^{2-}] = 10^{-2}$	CO ₃ ⁻ + ĤCOO ⁻ HCO ₃ ⁻ + CO ₂ ⁻ CO ₂ ⁻ + H ₂ O CO ₅ ⁻ + H ₂ CO ₅ ⁻ - H ⁺ + H ₂ CO ₂ ⁻ + CO ₂ + OH ⁻	$\begin{array}{c} 2.000 \times 10^{3} \\ 1.500 \times 10^{5} \\ 3.200 \times 10^{9} \\ 2.100 \times 10^{8} \\ 8.000 \times 10^{8} \\ 4.000 \times 10^{7} \end{array}$	 Direct effect The direct effect limit Mechanism: is it the same? Dependence of pH? Decay kinetic of carbonate

Pre-solvated electron reaction ?!

> Study mechanism of speciation of Mn et Re

Trygve et al, *journal of nuclear materials*, 375 (2008) 331-339 Zhongli et al, *radio active waste managment and proposal*, 136 (2001) 231-240

Perspective

- Electrochemistry of Re
- \succ H₂ yield for radiolysis of Tc
- Electron pulse radiolysis
- $\succ \alpha$ pulse radiolysis carbonate
- characterization by EPR, EXAFS
- > Speciation of M by EXAFS/ Simulation DFT

Speciation of Technetium in Sulfuric Acid/Hydrogen Sulfide Solutions

Maryline Ferrier, Frederic Poineau, Jerome Roques, Alfred P. Satteleberger and Kenneth R. Czerwinski

Contact e-mail: ferrierm@unlv.nevada.edu

Chemical investigations of technetium are strongly coupled to nuclear fuel cycle and radiopharmaceuticals. The most readily available technetium isotope for chemistry studies is ⁹⁹Tc ($T_{1/2} = 2.13 \times 10^5$ years, $\beta = 280$ keV) which is produced during the fission of ²³⁵U via the ⁹⁹Mo decay with a fission yield of nearly 6%. The high production rate and the long half-life make technetium an element of concern in waste management.

Despite its important role in radiopharmaceuticals and the nuclear fuel cycle, the fundamental chemistry of technetium is not as well developed as that of the neighboring transitions metals; one of the most striking examples is the sulfide chemistry. Only one binary sulfide (TcS_2) has been unambiguously characterized. Ditechnetiumheptasulfide (Tc_2S_7) has also been reported but its exact structure, speciation and composition is unclear but has been proposed as immobilization process for technetium in environment.^{1,2,3}

 Tc_2S_7 is obtained by the reaction between pertechnetate and hydrogen sulfide in an acidic solution (0.5 to 5 M HCl or H_2SO_4). Previous works analyzed the solid but the exact nature of the precipitate is controversy and the stoichiometry Tc_3S_{10} has been mentioned.¹ The speciation of technetium in presence of sulfide in aqueous media is unknown and the mechanism of formation and dissolution of " Tc_2S_7 " are unclear.

In the present work, the reaction between Tc (VII) and $H_2S_{(g)}$ in 12 M H_2SO_4 has been studied. This reaction produced a black solid and a brown supernate. The solid was analyzed by energy dispersive X-ray (EDX) and X-ray absorption fine structure (XAFS) spectroscopy and the results were consistent with the presence of Tc_2S_7 . The speciation of technetium in the supernate was performed by UV/Visible and XAFS spectroscopy. Experiments showed that in 12 M H_2SO_4 an intermediate Tc(V) sulfate complex was formed. Analysis indicated that the final complex present in solution was a polymeric species with a Tc–O-Tc core coordinated to sulfate ligands. Density Functional Theory (DFT) calculations showed that the proposed complexes were stable and that the theoretical structure was in good agreement with XAFS data.

¹ W.W. Lukens, J. J. Bucher, D. K. Shuh and N. M. Edelstein, *Environ. Sci. Technol.*, **2005**, 39, 8064-8070

² Y. Liu, J. Terry and S. Jurisson, *RadiochimActa*, **2007**, 95, 717-725

³ S. Kunze, V. Neck, K. Gompper and Th. Fanghanel, *Radiochim. Acta*, **1996**, 74, 159-163

Speciation of Tc in 12 M H₂SO₄/ H₂S solution

Maryline Ferrier UNLV Radiochemistry Ph.D. student

M. Ferrier, J. Roques, F. Poineau, A. P. Sattelberger, J. Unger and K. R. Czerwinski, *Eur. J. Inorg. Chem.*, 2046–2054, **2014**

- Introduction
 - Technetium
 - Technetium sulfides
 - Technetium in 12 M sulfuric acid
- Experimental
- Results and discussion
- Conclusion and Future work

Synthesis of technetium sulfides

Introduction

Introduction: Technetium UN

Goals:

- Investigation of waste form for long term disposal
 - · Glass, Oxide, Metallic, Sulfide compounds • ReS₂ described has having lower solubility than ReO₂[1]
- Need to understand technetium sulfide chemistry
- Only 2 binary Tc sulfide compounds are known: • Tc_2S_7 and TcS_2 [2]
- Evidence of technetium oxysulfide • TcO₃S⁻: reaction in MeCN between TcO₄⁻ and [(CH₃)₃Si]₂S [3]

Y. Xiong, and S. Wood, *Geochemical* Transactions, 3, 1–10, **2002** K. Schwochau, Technetium: Chemistry and Radiopharmaceutical Applications, Wiley-VCH: Weinheim, Germany, **2000** M. Ferrier et al., *Dalton Trans.*, 41(20), 6291–6298, **2012**

Introduction

From literature:

- TcO_4^- in 2–4 M $H_2SO_4 + H_2S_{(q)} \rightarrow T_2S_{7 (s)}$
 - · Solid is amorphous
 - EXAFS characterization
 - No analysis on the supernate
- What happens when you perform the reaction in 12 M H₂SO₄?

Optimized structure: Tc^VO(HSO₄)₃(OH⁻)

Experimental

<image><section-header><complex-block><figure>

- 100 mg KTcO₄ in 5 mL 12 M H₂SO₄ (yellow solution)
- Bubble $H_2S_{(g)}$ in 12 M H_2SO_4 for 20 minutes
- The solution went from colorless to cloudy

Results and Discussions

Precipitate - EDX analysis UNLV

Precipitate-XANES analysis UNIV

 \mathbf{F} Tc₂S₇

- If we assume S in (-II) oxidation state
- Tc should be in (+VII) oxidation state

Possible mixture of S oxidation states

I. Almahamid et al., *Inorg. Chem.*, 34(1), 193-198, 1995
 M. Ferrier et al., *Dalton Trans.*, 42(44), 15540-15543, 2013
 Y. Liu et al., *Radiochim. Acta*, 95, 717-725, 2007

Solution-UV/Vis analysis <u>UNLV</u>

• Evaluate soluble species formation mechanism:

Supernate-XANES analysis UNIV

• The position of Tc K-edge = -7.5 ± 0.3 eV

Supernate-EXAFS analysis UNIV

- Use a model: Tc₂O(HSO₄)₄(H₂O)₂(OH)₂
- Parameter σ^2 fixed, CN and R allowed to vary

Compound	Tc scattering	CN	R [Å]	σ² [Ų]
	Tc - O(-Tc)	1.3 <u>+</u> 0.3	1.81(2)	0.002
12 M supernate	Tc -O	3.8 <u>+</u> 0.8	2.03(2)	0.004
	Tc – S _{bid}	0.7 <u>+</u> 0.1	2.84(3)	0.006
	Tc – S _{mono}	1.7 <u>+</u> 0.2	3.16(3)	0.009
	Tc-O-Tc	0.7 <u>+</u> 0.3	3.62(4)	0.008

- Polymer Tc O Tc with
 Monodentate sulfate ligand (1)
 Bidentate sulfate ligand (1)
 - H₂O or OH ligands (0-1-2)

F. Poineau, P. F. Weck, B. P. Burton-Pye, I. Denden, E. Kim, W. Kerlin, K. E. German, M. Fattahi, L. Francesconi, A. P. Sattelberger, K. R. Czerwinski, *Dalton Trans.* **2013**, *42*, 4348-4352.

Conclusions and Future Work

- Perform reaction at various H₂SO₄ molarity
 - $\,\circ\,$ See if still precipitation of Tc_2S_7
 - Study Tc speciation in solution
- Find different analyses possible for radioactive material in order to have a better understanding on the solids
 - EXAFS on S K-edge, Neutron diffraction, IR, Modeling

Acknowledgements

- > Dr. Czerwinski, Dr. Poineau, Dr. Sattelberger
- > Dr. Roques, Dr. Ma, Dr. Lee and Dr. Reihnart
- Julie Bertoia and Trevor Low
- Jeremy Unger
- Radiochemistry group at UNLV

Funding for this research was provided by: a subcontract through Battelle 0089445 from the US Department of Energy, agreement No. DE-AC07-05ID14517, the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231 and NEUP grant from United State of Energy, Office of Nuclear Energy, through INL/BEA, LLS, Agreement No. DE-AC07-05ID14517, Contract No 00129169

Questions

Starting Compound

120 °C, KOH/H₂O₂/H₂O

NH₄TcO₄ with TcO₂

- 100 mg NH_4TcO_4/TcO_2 + 30 mg KOH
- 100 μ L H₂O₂ and 3 mL H₂O
- Heat and stir for 40 min, reduce volume
- Cool down the solution: gives white precipitate
- Remove supernate
- Wash solid with isopropanol and then diethyl ether
- Dry at 80 °C overnight
- ▶ 95% yield KTcO₄

tures (top) courtesy to Dr. Poi

Electrochemical properties of technetium species in acidic media

Maciej Chotkowski, Faculty of Chemistry, University of Warsaw

Electrochemical properties of technetium species dissolved in aqueous acidic media have been examinated using various "in situ" electrochemical methods, e.g. UV-Vis, EQCM. The results clearly show that the electrode matrix has a significant influence on the efficiency of TcO_4^- ions electroreduction.

Adsorption of technetate(VI) is the first step of pertechnetate ions electroreduction on a gold electrode.

The main and the most stable products of TcO_4^- ions electroreduction are dimeric oxotechnetium(III,IV) ions. These ions are much more resistant to oxidation than TcO^{2+} ions and even at potentials higher than 1V vs. SHE the rate of their oxidation is very slow.

The spectroelectrochemical measurements in Au/RVC-OTTLE system allowed determination of the standard redox potential for $[Tc(\mu-O)_2Tc]^{3+}/Tc(III)$ aqueous system which equals 0.255V.

Electrochemical properties of technetium species in acidic media

MACIEJ CHOTKOWSKI

FACULTY OF CHEMISTRY UNIVERSITY OF WARSAW

> 8TH INTERNATIONAL SYMPOSIUM ON TECHNETIUM AND RHENIUM – SCIENCE AND UTILIZATION,

> > PORNICHET 29TH SEPT. - 03RD OCT. 2014

overview

✓ Technetium- general electrochemical properties

✓ techniques

 \checkmark influence of surface, H₂SO₄ and TcO₄⁻ concentration on the electroreduction of TcO₄⁻ ions

 \checkmark influence of temperature on the electroreduction of TcO₄⁻ ions in H₂SO₄

 extraction of technetium species with lower oxidation states from aqueous to organic phase

✓ summary

general	electroche	mical prope	erties of t	echnetium	Wydział Cham
E ⁰ TCO2/TCO4-	= 0.75V	Oxidation state	Mn	Тс	Re
E ⁰ TcO42-/TcO4-	~ -0.60V	+VII	MnO ₄ -	TcO ₄ -	ReO ₄ -
E^0 TC(V)/TCO4- E^0 TCO(OH)2/TCO4	= -0.60V = 0.58V	+VI	MnO ₄ ²⁻ (b)	$TcO_4^{2-}/HTcO_4^{-}$ (unstable a/b)	$\operatorname{ReO}_3(a)$
100(011)2/1004	-	+V	MnO ₄ ³⁻ (b)	Tc(V) (unstable b) but TcO ³⁺ (a)	$\operatorname{Re}_2O_5(a)$
E ⁰ _{H2O/O2}	= 1.23V			a: acidio	c; b: basic

$$\begin{split} & \text{TcO}_2 \star 1,6\text{H}_2\text{O} \leftrightarrow \text{TcO(OH)}_2 + 0.6\text{H}_2\text{O} \qquad \text{K} = 10^{29,4} \\ & \text{TcO}_4 \xrightarrow{-} \text{Tc}(\text{VI,V})(\text{disprop./electrored.}) \rightarrow \text{TcO}_4 \xrightarrow{-} \text{Tc}(\text{IV}) \rightarrow \text{Tc}(\text{III}) \end{split}$$

Reticulated Vitreous Carbon (RVC[®])

Develoal properties	Va	lues	
Physical properties	RVC	GC	
Density [kg m ⁻³]	48	1650	
Void volume [%]	90 - 97%	0	
Bulk resistivity [Ω cm]	0.005	0.001	
Thermal cunductivity [cal cm ºC w 10 ⁻⁴ tor]	0.08-1200	0.01 – 0.02	

UV-Vis spectra and cyclic voltammogram of pertechnetates in 4M $\rm H_2SO_4 + KTcO_4, RVC-OTTLE$

electrochemical microbalance study

	Δ(IWI/Z)
$H^+ + TcO_4^{-*}H_2O_{(ads)} + e^- \rightarrow HTcO_4^{-*}H_2O_{(ads)}$	1
$2\mathrm{H^{+}}+\mathrm{TcO}_{4}^{-*}\mathrm{H}_{2}\mathrm{O}_{(ads)}+\mathrm{e^{-}}\rightarrow\mathrm{TcO}_{3}^{*}\mathrm{H}_{2}\mathrm{O}_{(ads)}+\mathrm{H}_{2}\mathrm{O}$	-16
$\mathrm{HTcO_4}^*\mathrm{H_2O_{(ads)}} + \mathrm{e}^{-} \rightarrow \mathrm{HTcO_4}^{-*}\mathrm{H_2O_{(ads)}}$	0
	13

Reverse Levich plots for the limiting current of pertechnetate reduction current recorded at a gold electrode in various H_2SO_4 solutions, $v = 2Vmin^{-1}$.

15

influence of $\rm H_2SO_4$ concentration on the electroreduction of $\rm TcO_4^-$ ions

16

UV-Vis spectra recorded during chronoamperometric reduction of pertechnetates in 4M H_2SO_4 + 1.19mM KTcO₄, potential range 0.65V+0.53V, Au-OTE

UV-Vis spectra of TcO₄' (E= 0.84V), polymeric Tc(III,IV) (E = 0.49V) and Tc(IV) (E = 0.23V) recorded in 4M $\rm H_2SO_4$ + 1.19mM KTcO_4 Au-OTE

8

spectroelectrochemistry of technetium in 4M $\rm H_2SO_4$

UV-Vis spectra recorded during chronoamperometric oxidation of $[Tc_2O_2]^{3+}$ in 4M H_2SO_4 + KTcO_4, potential range 0.61V+1V, Au-OTE, potentials vs. Ag,AgCl

E vs. log ([Ox]/[Red]) plot. Spectroelectrochemical experiments recorded in 4M $\rm H_2SO_4+KTcO_4$ RVC-OTTLE, potentials vs. SHE

9

UV-Vis spectra recorded during chronoamperometric reduction of $[Tc2O2]^{3+}$ in 4M $H_3SO_4+KTcO_4,$ potential range 0.2V+0.3V, Au/RVC-OTTLE

E vs. log ([Ox]/[Red]) plot. Spectroelectrochemical experiments recorded in 4M $\rm H_2SO_4+KTcO_4$ Au/RVC-OTTLE

summary

✓ In hydrodynamic experiments the soluble, polymeric technetium(III,IV) species are generated. These species are formed during the process with rate controlled by diffusion as follows from the low value of activation energy.

✓ The TcO²⁺, Tc³⁺/TcO⁺ and $[Tc_2O_2]^{3+}$ can be detected spectroscopically by the bands at 400, 440 and 502 nm respectively.

 \checkmark Extraction of Tc(III or IV) from 4M H₂SO₄ or 4M H₂SO₄/HNO₃ to organic phase is much lower than TcO₄⁻ ions

✓ Tc(III and IV) species are not oxidized immediately by nitric acid

Thank You for Your Attention

extraction of Tc(III and IV) from H₂SO₄ and H₂SO₄/HNO₃ to kerosene /30% TBP

UV-Vis spectra recorded after chronoamperometric reduction of TcO_4^- in 4M H_2SO_4 at various applied potential, RVC-OTTLE

V_{aq}	=	Vorg	=	2.1	ml

 $v_{aq} - v_{org} - 2.1 \text{ Hm}$ t = 10 min c_{TcO4}. = 0.54 mmol/dm³ aq. phase : c_{H2SO4} = 4 mol/dm³ (+ 0.1 cm₃ HNO_{3(conc.)}) org. phase : kerosene + 30% TBP

	D _c					
Tc species	H ₂ SO ₄	H₂SO₄/HNO₃				
TcO ₄ -	85.8	4.01				
TcO ²⁺	0.18	0.84				
Tc ³⁺ /TcO ⁺	0.06	1.45				
[Tc ₂ O ₂] ³⁺	1.55	1.18				
Distribution ratio of various Tc species $D_C = \frac{A_{org}}{A_{aq}}$						

summary

✓ concentration of the sulfuric acid has a significant influence in the electrochemical reduction of pertechnate ions.

 \checkmark Tc species on lower oxidation states and generated during reduction of pertechnates are stabilized at higher concentrations of H₂SO₄.

✓ The peak related to electroreduction of pertechnetates to Tc(VI,V) is much better developed in 4M H_2SO_4 as compared to 0.5M solution,

✓ In the first step of pertechnetates reduction are generated adsorbed $HTcO_4^-$ on the surface of Au electrode

Aquatic chemistry and thermodynamics of Tc in dilute to concentrated saline systems

E. Yalcintas¹, X. Gaona¹, A. C. Scheinost², M. Altmaier¹, H. Geckeis¹

¹⁾Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Germany ²⁾Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Germany

ezgi.yalcintas@kit.edu

Technetium–99 is a β -emitting fission product highly relevant for the safety assessment of waste repositories for radioactive waste disposal due to its significant inventory in spent nuclear fuel, long half-life (t_{1/2} ~211.000 a) and redox sensitivity. Tc(VII) and Tc(IV) are the most stable redox states of Tc in the absence of any complexing ligands. Tc(VII) exists as highly soluble and mobile TcO₄⁻pertechnetate anion under sub-oxic and oxidizing conditions, whereas Tc(IV) forms sparingly soluble hydrous oxide (TcO₂·xH₂O) under reducing conditions. For understanding Tc behaviour under repository relevant conditions, investigations focussing on redox state distribution, solubility and hydrolysis of Tc(IV) in dilute to concentrated NaCl, MgCl₂ and CaCl₂ solutions are required.

In the present study, the redox behavior of Tc(VII)/Tc(IV) was systematically investigated using various homogenous and heterogeneous reducing systems in dilute to concentrated NaCl and MgCl₂ solutions. Measured E_h and pH values were represented in *Pourbaix* diagrams calculated using thermodynamic data selected in the NEA–TDB [1] in order to assess Tc redox distribution in these systems. The thermodynamically calculated borderline for the Tc(VII)/Tc(IV) couple agrees well with the experimental data, indicating that E_h and pH are robust and reliable parameters for the prediction of Tc behavior in the absence of complexing ligands in the investigated aqueous systems. The study was complemented by advanced spectroscopy (EXAFS) to investigate the reduction/sorption mechanism of Tc on solid iron phases of special relevance for nuclear waste disposal.

Tc(IV) solubility was investigated in dilute to concentrated NaCl, MgCl₂ and CaCl₂ solutions in the presence of reducing chemicals. In the acidic pH range, a very significant increase in solubility (up to 4 orders of magnitude) is observed with increasing ionic strength for all considered salt systems. Thermodynamic analysis of this pH-region are on-going, taking into considerationhydrolysis species selected NEA-TDB [1] but also polymeric $Tc_n O_p^{(4n-2p)+}$ and/or $Tc_n O_n Cl_m^{(4n-2p-m)-1}$ species previously reported on the basis of spectroscopic observations^[2]. In concentrated alkaline NaCl solutions, the same speciation as for diluted systems is retained (predominance of $TcO(OH)_3$), although a decrease in solubility compared to dilute systems takes place due to ion interaction processes. Changes in the aqueous speciation are observed in concentrated alkaline MgCl₂ and CaCl₂ brines, where the formation of ternary $Mg_3[TcO(OH)_5]^{3+}$ and $Ca_3[TcO(OH)_5]^{3+}$ species is proposed based on the slope analysis and model (SIT/Pitzer) calculations. These ternary Tc(IV) species aresimilar to those previously reported for actinides in analogous brine systems. XRD, SEM-EDS and chemical analysis confirm that $TcO_2 \cdot xH_2O(s)$ is the solid phase controlling the solubility of Tc(IV) in the saline systems at $pH_m \le 10.5$. Unreported sharp XRD reflections from the Tc solid phases in 4.5 M CaCl₂ at $pH_m \ge 10.5$ hint towards a possible solid phase transformation of $TcO_2 \cdot xH_2O(s)$ into a so far unknown Ca–Tc–OHsolid. Chemical, thermodynamic and activity models (SIT, Pitzer) are derived for the system $Tc^{4+}-H^+-Na^+-Mg^{2+}-Ca^{2+}-OH^--Cl^--H_2O$ based upon the newly generated experimental solubility data and complement the current data selection of the OECD Nuclear Energy Agency (NEA-TDB)[1].

Guillaumont, R., Fanghänel, T., Neck, V., Fuger, J., Palmer, D. A., Grenthe, I. and Rand, M. H., ed. OECD Nuclear Energy Agency. Vol. 5. North-Holland, Amsterdam, Elsevier, (2003).
 Vichot, L., Fattahi, M., Musikas, C. and Grambow, B., Radiochimica Acta, **91**, 263-271, (2003).

Results and Discussion
Preliminary model for Tc(IV) solubility in
NaCl, MgCl ₂ and CaCl ₂ solutions

Chemical Reactions	nH rango	SIT	Pitzer
Chemical Reactions	phrange	log*K°	log* <i>K</i> ⁰
$TcO_2 \cdot 1.6H_2O(s) + 2/3H^+ \Leftrightarrow 1/3Tc_3O_5^{2+} + 1.93H_2O$	pH _m ≤ 4	-1.49 ± 0.1	-1.56 ± 0.1
$TcO_2 \cdot 1.6H_2O(s) + \Leftrightarrow TcO(OH)_2(aq) + 0.6H_2O$	4 ≤ pH _m ≤ 11	-8.80 ± 0.5	-8.80 ± 0.5
$TcO_2 \cdot 1.6H_2O(s) + 0.4H_2O \Leftrightarrow TcO(OH)_3^- + H^+$	pH _m ≥ 11	-19.26 ± 0.3	-19.32 ± 0.3
$TcO_2 \cdot 1.6H_2O(s) + 3Mg^{2*} + 2.4H_2O \Leftrightarrow Mg_3[TcO(OH)_5]^{3*} + 3H^*$	pH _m ~ 9	$\textbf{-40.00} \pm 0.2$	$\textbf{-39.87} \pm 0.2$
$TcO_2 \cdot 1.6H_2O(s) + 3Ca^{2+} + 2.4H_2O \Leftrightarrow Ca_3[TcO(OH)_5]^{3+} + 3H^+$	pH _m ≥ 9.5	-41.47 ± 0.2	-41.00 ± 0.2

Sp	ecies	SIT	Pitzer				
	,	-	Binary parameters Mixing parameters		rameters		
1	J	ء _{ان}	β ⁽⁰⁾	\$ ⁽⁰⁾	C ^(φ)	Θ _{ii} ,	Ψ_{iii}
Tc ₃ O ₅ ²⁺	CI-	-0.33 ± 0.03	-0.34	1.6*	0.04	0	0
TcO(OH)3 ⁻	Na ⁺	0.1 ± 0.02	0.11	0.3*	0.04	0	0
Mg ₃ [TcO(OH) ₅] ³⁺	CI-	$\textbf{-0.28} \pm 0.05$	0.12	4.3*	-0.02	0	0
Ca3[TcO(OH)5]3+	CI-	$\textbf{-0.28} \pm 0.05$	0.12	4.3*	-0.02	0	0
TcO(OH) ₂	Na+,Mg2+,Ca2+,Cl-	0			$\lambda_{ii} = 0$		

*fixed value for the corresponding charge type

22 23.11.2014

KIT-INE

Density and activity of perrhenic and pertechnetic acid aqueous solutions at 25°C

P. Moeyaert^a, L. Abiad^a, C. Sorel^{a*}, J.-F. Dufrêche^b, M. Miguirditchian^a and P. Moisy^a

^{*a*} French Alternative Energies and Atomic Energy Commission, CEA, Nuclear Energy Division, Radio Chemistry & Processes Department, DRCP, BP 17171, F-30207 Bagnols sur Cèze, France. E-mail: <u>christian.sorel@cea.fr</u>; Tel: +33 4 66 79 62 75

^b Institut de Chimie Séparative de Marcoule, Université de Montpellier 2, UMR 5257 CEA / CNRS / UM2 / ENSCM BP 17171 30207 Bagnols sur Cèze Cedex, France

In the conditions of the spent nuclear fuel reprocessing, technetium is mostly present at the +7 oxidation state, which is the most stable oxidation state in solution, and forms pertechnetic acid HTcO₄.

In the solutions involved in the actinides separation processes (riched in cations and anions), it is not possible to make the approximation that activities are equal to concentrations. Stoichiometric activity coefficients in aqueous phase must be determined to take into account deviations from an ideal behaviour. To estimate the deviations from ideality whatever the solution theory used, binary data (variations of the osmotic coefficient, activity coefficient and density of the electrolyte in solution in the water) are needed. The knowledge of these data allows the prediction of various physico-chemical properties of solutions containing several electrolytes, and is required to model the thermodynamic behaviour of electrolytes in spent nuclear fuel.

Since perhenic acid is an analogue of pertechnetic acid, binary data for HReO₄ at 25°C are first determined by direct water activity and osmolality measurements, by freeing ourselves from the constraint of gloves box environment. Thus, the validation of the experimental procedure on HReO₄ aqueous solutions allows carrying on the measurements in a confined volume for HTcO₄ binary solutions.

The variations of the osmotic coefficient of these acids in water are represented mathematically according to a model recommended by the National Institute of Standards and Technology and according to the specific interaction theory. The data are also used to evaluate the parameters of the standard three-parameters of Pitzer's ion-interaction model, along with the parameters of Archer's four-parameter extended ion-interaction model, to higher molalities than previously advised. Experimental thermodynamic data are well represented by these models. Density variations at 25°C are also established and used to express the activity coefficient values on both the molar and molal concentration scales.

Figure 1: Experimental and calculated osmotic coefficient ϕ variation of binary HReO₄-H₂O solutions at 25°C with molal concentration.

1. O. D. Bonner, J. Solut. Chem., 1982, 11, 665-670.

2. G. E. Boyd, Inorg. Chem., 1978, 17, 1808-1810.

DENSITY AND THERMODYNAMIC ACTIVITY OF PERRHENIC AND PERTECHNETIC ACID AQUEOUS SOLUTIONS AT 25°C

<u>P. Moeyaerta</u>, L. Abiada, C. Sorela, M. Miguirditchiana, J.-F. Dufrêcheb, Ph. Moisya

^a CEA Macoule BP 17171 30207 Bagnols sur Cèze, France.
^b ICSM BP 17171 30207 Bagnols sur Cèze, France E-mail: pauline.moeyaert@cea.fr

ISTR2014 La Baule, 30th september 2014

SOLVENT EXTRACTION MODELLING

Technetium in the spent fuel dissolution solution

Tc = fission product

cea

- Causes some problems (hydrazine destruction, U & Pu contamination)
- Measurements implemented in La Hague plant.

Technetium SX equilibrium

$$\begin{aligned} \mathrm{H}^{+} + \mathrm{TcO_{4}}^{-} + \mathrm{pH_{2}O} + \mathrm{xTBP} & \leftrightarrows \overline{\mathrm{HTcO_{4}(H_{2}O)_{p}(TBP)_{x}}} \\ \mathrm{UO_{2}}^{2+} + \mathrm{nTcO_{4}}^{-} + (2-\mathrm{n})\mathrm{NO_{3}}^{-} + \mathrm{xTBP} & \leftrightarrows \overline{\mathrm{UO_{2}(NO_{3})_{2-\mathrm{n}}(TcO_{4})_{p}}\mathrm{TBP}_{x}} \end{aligned}$$

Mass action law

$$K_{\overline{HTcO_4(H_2O)_p(TBP)_x}} = \frac{a_{\overline{HTcO_4(H_2O)_p(TBP)_x}}}{a_{\overline{HTcO_4}}a_{\overline{H_2O}}^p a_{\overline{TBP}}^x} = \frac{[\overline{HTcO_4(H_2O)_p(TBP)_x}]}{a_{\overline{H_2O}}^p [\overline{HTcO_4}]\gamma_{\overline{HTcO_4}}[\overline{TBP}]^x} \frac{\gamma_{\overline{HTcO_4(H_2O)_p(TBP)_x}}}{\gamma_{\overline{TBP}}^x}$$
Issue: estimation of the activity coefficient

Prime mechanisms for binding of TcO_4^- and ReO_4^-

BINARY DATA OF AQUEOUS ELECTROLYTE SOLUTIONS

Measured in the molality scale (mol.kg⁻¹)

cea

Density is required for conversion in other concentration scales (molarity, molar fraction) and quantification of the volume variations

CE2 TECHNETIUM BINARY DATA IN THE LITERATURE

Only one experimental measurements: Boyd, 1978

Isopiestic measurements: Water vapour pressure measurements using an isopiestic reference standard (NaCl_{[aq)} & SrCl_{2(aq)} at higher molality)

CC2 HREO4 AS A SIMULANT FOR HTCO4

Validation of the experimental procedure on a simulant

- > $HReO_4$: Re = non-radioactive analogue for Tc
- > Outline:
 - → 1^{st} part: activity of HReO₄ solutions → 2^{nd} part: activity of HTcO₄ solutions

| PAGE 5

- Wider concentration range (especially above 6 mol.kg⁻¹)
 Alice in a constraint of the second s
- Good quality of the fits

Validation of the experimental procedure ⇒ Allows carrying on the measurements in a confined volume for HTcO₄ binary solutions

CE2 HTCO4 PREPARATION & MEASUREMENTS

Preparation of the binary electrolyte HTcO₄

- ► HTcO₄ concentrated solution:
 - \rightarrow From the mixed powder: NH₄TcO₄ + small amount of TcO₂
 - \rightarrow + dissolution in NH₃ + heating \rightarrow white powder of NH₄TcO₄
 - \rightarrow + water + KOH + heating \rightarrow KTcO_4
 - \rightarrow + strong-acid cation exchanger (Dowex) \rightarrow HTcO₄

 \Rightarrow colourless binary HTcO₄-H₂O mother solution \Rightarrow m = 8.32 mol.kg⁻¹

Cascading mass dilutions

Measurements

> Density and water activity (similar methods as HReO₄)

G. E. Boyd, Inorg. Chem., 1978, 17, 1808-1810.

COMPARISON BETWEEN HTCO₄ & HREO₄

> For m < 1 mol.kg⁻¹: similar variation of ϕ vs m

cea

> At high concentration: HTcO₄ more associated than HReO₄

> HReO₄ relatively good analogue for HTcO₄ (difference for ln γ < 1)

C22 CONCLUSION & OUTLOOK

Conclusion

- Measurements of density and activity coefficients for HReO₄ & HTcO₄
 - → Very **good agreement** between this work and previous studies → Boyd's values for HTcO₄ at high concentration **probably wrong** (presence of
 - Tc_2O_7 ?)
 - → Very good quality of the fitted formula (NIST, Pitzer) up to 8 mol.kg⁻¹ (HTcO₄) and 12 mol.kg⁻¹ (HReO₄)

Outlook

- Improvement in the description of aqueous Tc solutions for chemical engineering (separation processes: technetium models for PUREX or new separation processes)
- Improvement in the thermodynamic knowledge for HReO₄ (hydrometallurgy...)
- Measurements of thermodynamic data (association constant), hydrated size (BIMSA or MSA treatments)
- > Measurements for mixture electrolytes (validity of mixing rules: ZSR, etc ?)

| PAGE 15

Aknowledgements

Dr. Émilie Bossé Dr. Christian Sorel Pr. Jean-François Dufrêche Dr. Lidwine Abiad Pr. Philippe Moisy Dr. Manuel Miguirditchian Pr. Pierre Turq

THANK YOU FOR YOUR ATTENTION

afac

Direction de l'energie nucleaire Département de radiochimie des procéd Service de modélisation et de chimie de

HREO₄ OSMOTIC COEFFICIENT FIT

cea

O. D. Bonner, J. Solut. Chem., 1982, 11, 665-670.
G. E. Boyd, Inorg. Chem., 1978, 17, 1808-1810.
D. P. Fernandez, A. R. H. Goodwin, E. W. Lemmon, J. Sengers and R.
C. Williams, J. Phys. Chem. Ref. Data, 1997, 26, 1125-1166
PAGE 17

cea **OSMOTIC COEFFICIENT FIT**

Pitzer model: I < 6 mol.kg⁻¹ √ī $\phi = 1 + |\mathbf{z}^{+}\mathbf{z}^{-}|f^{\phi} + m \frac{2\upsilon_{M}\upsilon_{X}}{\upsilon}B^{\phi} + m^{2}\frac{2(\upsilon_{M}\upsilon_{X})^{3}}{\upsilon}C^{\phi}$ $A_{\phi} \frac{1}{1 + b\sqrt{I}}$ ₿¢ $= \beta^{0} + \beta^{1} e^{-\alpha \sqrt{1}}$ A,=0,391. β,β, C⁰, C¹ : adjustable parameters Extended Pitzer model $\mathrm{C}^{\Phi} = \mathrm{C}^{\mathrm{u}} + \mathrm{C}^{\mathrm{u}} \mathrm{e}^{-\omega\sqrt{I}}$

Specific Interaction Theory (SIT): I < 3.5 mol.kg^{-†}

$$\phi = 1 - \frac{A \ln 10 |z^+ z^-|}{1.5^3 J} \left[(1 + 1.5\sqrt{J}) - 2 \ln(1 + 1.5\sqrt{J}) - \frac{1}{1 + 1.5\sqrt{J}} \right] + (\varepsilon_1 + \varepsilon_2 \ln m) m$$
A=0.509

 $\epsilon_1, \, \epsilon_2$: adjustable parameters

a, b, c, d et e : adjustable parameters

Comparative study of several supramolecular TcO₄⁻ and ReO₄⁻ receptors for applications in sensors and radiopharmaceuticals

K.E. German^{1,2}, Ya.A. Obruchnikova ^{1,2,3}, G.V. Kolesnikov, G.A. Kirakosyan^{1,2,4}, I.G. Tananaev^{1,5}, B.F. Myasoedov¹
1 - Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow, Russia 2 - Moscow Medical Institute REAVIZ, Moscow Russia
3 - Mendeleev Russian Chemical Technology University, Moscow, Russia 4 - Kurnakov IGIC RAS, Moscow, Russia; 5 - PO Mayak, Ozersk, Russia

 $TcO_4^- \mu \text{ ReO}_4^-$ are extensively used in nuclear medicine and many other industries. Most of its radiopharmaceuticals are modified for usage in different deceases after chemical reduction of these metal(VII) anions to lower oxidation state. But the question of the species direct modification trough binding to organic cations of special design is of high interest. It is difficult to bind hydrophobic $TcO_4^- \mu \text{ ReO}_4^-$. But not impossible. The best binding was achieved in case of quaternary phosphonium and vinilpyridinium anion-exchange resins. The K_d were reported as high as 10^6 ml/g. Also very high binding was achieved on TPPB in Sellafield for purification of alkali radwastes. Probably the most efficient receptor for TcO_4^- known was reported in [1].

This work is to sum up the available literature and our proper data for recently developed approach of template synthesis in course of new receptor design and synthesis. It was rational to reduce macrobicycle cavity to macrocyclic and consider the rigid macrocyclic receptors as promising binding centers while trying the supramolecular interactions as the rout for template synthesis of macrocycles.

As demonstrated in [2] the dendrimers are efficient but not selective.

So, we proposed the derivatives of triphenylguanidinium cation for binding $TcO_4^- \mu ReO_4^-$ oxoanions. The results will be reported for the complex stability constants and considered in comparison with those obtained earlier.

The work was supported by the grant 45P for fundamental researches by Presidium of Russian Academy of Sciences.

- 1. Antipin I.S., Solovieva S.E., Stoikov I.I., Vershinina I.S., Pribylova G.A., Tananaev I.G., Myasoedov B.F. // Russ.Chem.Bull., Int. Ed. 2004.
- 2. Stephan H., Spies H., Johannsen B., Klein L., Vögtle F. // Chem.Comm. 1999.

ISTR 2014 8th International Symposium on Technetium and Rhenium Pornichet LA BAULE, France 29th September - 3rd October 2014

Comparative study of several supramolecular TcO₄⁻ and ReO₄⁻ receptors for applications in sensors and radiopharmaceuticals

K.E. German^{1,2}, Ya.A. Obruchnikova ^{1,2,3}, G.V. Kolesnikov, G.A. Kirakosyan^{1,2,4}, I.G. Tananaev^{1,5}, B.F. Myasoedov¹

Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow, Russia
 Moscow Medical Institute REAVIZ, Moscow Russia
 Mendeleev Russian Chemical Technology University, Moscow, Russia
 Kurnakov IGIC RAS, Moscow, Russia; 5 – PO Mayak, Ozersk, Russia

Problem of Tc binding is urgent TCO_4^- is the most stable form

TcO₄⁻ и ReO₄⁻ are extensively used in nuclear medicine

> ^{99m}Tc (E_{γ} = 141.0 keV, $\lambda_{1/2}$ = 6 h) **Diagnostic application** 80% from 30 mln. injections yearly

> ¹⁸⁸Re ($E_{\beta-}$ = 763.9 keV, $\lambda_{1/2}$ = 17 h) Therapeutic application

What is common for both nuclides: are produced as MO_4^- (M = Tc, Re) then reduced with SnCl₂, NaBH₄ injected as M(III)-(V) complexes

It is difficult to bind hydrophobic $TcO_4^- \mu ReO_4^-$

Anion	∆H⁰ _{hydr} kJ/mol*	R _{H2O} , nm	S _{ion} , Å ²	Q/S×10 ² , Å ⁻²	Increase
H ₂ PO ₄ ⁻	-522	0.20	50.3	2.0	hydrophobicity
H ₃ CCOO ⁻	-425	0.16	33.0	3.0	• size
Cl-	-367	0.18	41.2	2.4	
NO ₃ ⁻	-312	0.18	40.3	2.5	Decrease
I-	-291	0.22	60.8	1.6	surface charge
CIO ₄ -	-246	0.25	78.5	1.3	density
ReO ₄ -	-244	0.26	85.0	1.2	
TcO ₄ -**	-247	0.25	78.5	1.3	
MnO ₄ -	-250	0.24	72.4	1.4	
R _{H20} -	- ionic radius	in water			-

surface of an ion

S_{ion} Q/S - surface charge density of an ion

* $\Delta H^0_{\ hydr}$ и $R^{}_{\ H2O}$ obtained experimentally. Other data is calculated.

** for TcO_4^- data was produced by linear interpolation in the row: $MnO_4^- - TcO_4^- - ReO_4^-$.

Known methods for measuring binding of TcO₄⁻ with organic receptors

- Extraction the most popular method
- UV-Vis easy to get, but Tc and Re are UV active
- ¹H-NMR precise, but concentration must be higher ⁹⁹Tc-NMR then in objects of interest
- X-ray luck is needed

Some important examples of smaller receptors

Positive charge from N-alkyl imidazole
Acidic N-H from imidazole

Ray U., Mostafa G., Lu T., Sinha C. Hydrogen bonded perrhenate-azoimidazoles. // Cryst.Eng. – 2002. Ray U., Chand B., Dasmahapatra A., Mostafa G., Lu T., Sinha C. // Inorg.Chem.Commun. – 2003.

Some important examples of smaller receptors

- Positive charge from protonated imine
- Acidic N-H from protonated imine

Eble B., Berning D., Barnes C.L., Katti K.V., Jurisson S. // J.Chem.Cryst. – 1999.

Bondy C.R., Gale P.A., Loeb S.J. // Chem.Comm. - 2001.

Some important examples of smaller receptors

- Positive charge
- Acidic N-H from

K	HSO4-	Cl-	Br ⁻	NO ₃ -	CIO ₄ -	ReO ₄ -
¹ H-NMR in MeCN	19	77	48	26	18	24

Nieto S., Pérez J., Riera L., Riera V., Miguel D. // New J.Chem. - 2006.

Very efficient ketone receptor for TcO_4^- (from NaOH)

Na⁺ goes inside the moiety and pulls TcO₄⁻

Antipin I.S., Solovieva S.E., Stoikov I.I., Vershinina I.S., Pribylova G.A., Tananaev I.G., Myasoedov B.F. // Russ.Chem.Bull., Int. Ed. – 2004.

Antipin I.S., Solovieva S.E., Stoikov I.I., Vershinina I.S., Pribylova G.A., Tananaev I.G., Myasoedov B.F. // Russ.Chem.Bull., Int. Ed. – 2004.

Angewandte Communications. Int. Ed. 2012, 51, 9772 –9776.

The formation of an inclusion complex with 99 Tc(Re)O₄⁻ is accompanied by the quenching of the fluorescence of 1H₆⁶⁺.

V. Amendola, G. Bergamaschi, M. Boiocchi, R. Alberto, H. Braband Chem. Sci., 2014, 5, 1820-1826

- 4⁺ charge from two ruthenium atoms
- Hydrophobic cavity

 $TcO_4^- > ReO_4^- > ClO_4^- >> NO_3^- > SO_4^{2-} > Cl^-$

Holman K.T., Halihan M.M., Jurisson S.S., Atwood J.L., Burkhalter R.S., Mitchell A.R., Steed J.W. // J.Am.Chem.Soc. – 1996.

Hydrophobic cavitand with positively charged fragments

- 4⁺ charge from two ruthenium atoms
- Coordination due to hydrophobic cavity and π interactions

Holman K.T., Halihan M.M., Jurisson S.S., Atwood J.L., Burkhalter R.S., Mitchell A.R., Steed J.W. // J.Am.Chem.Soc. – 1996.

Hydrophobic cavitand with positively charged fragments

- 3⁺ charge from three iron atoms
- More uniform charge distribution
- The same hydrophobicity

Gawenis J.A., Holman K.T., Atwood J.L., Jurisson S.S. // Inorg.Chem. – 2002.

Antonioli B., Gloe K., Gloe K., Goretzki G., Grotjahn M., Heßke H., Langer M., Lindoy L.F., Mills A.M., Söhnel T. // Z.Anorg.Allg.Chem. – 2004.

 $C_3\mbox{-symmetric}$ macrobicycles bind $\mbox{ReO}_4\mbox{-}$ outside cavity

- Protonation of receptor is important for strong binding
- ReO₄⁻ coordinates outside the cavity

Stephan H., Gloe K., Kraus W., Spies H., Johannsen B., Wichmann K., Chand D.K., Bharadwaj P.K., Muller U., Muller W.M., Vogtle F. In «Fundamentals and applications of anion separations». Ed. by Singh R.P., Moyer B.A. Kluwer: New York; 2004.

 $C_3\mbox{-symmetric}$ macrobicycles bind $\mbox{ReO}_4\mbox{-}$ outside cavity

- Larger cavity still does not allow TcO₄⁻ to go inside
- More hydrophilic ligand extracts worse

It is rational to reduce macrobicycle cavity to macrocyclic

- Amino groups are protonated but...
- Amides coordinate ReO₄-

Ghosh S., Roehm B., Begum R.A., Kut J., Hossain Md.A., Day V.W., Bowman-James K. // Inorg.Chem. – 2007.

Seidel D., Lynch V., Sessler J.L. // Angew.Chem.Int.Ed. – 2002. Kolesnikov G. PhD Thesis. 2011. Yes, all these marcocycles do work perfectly, but how we can get'm?

SUPRAMOLECULAR INTERACTIONS AS THE ROUT FOR TEMPLATE SYNTHESIS OF MACROCYCLES

- Chloride is small and volatile, anything suits
- ReO₄⁻ is highly complementary to the rigid macrocyclic core

Kolesnikov G.V., German K.E, Kirakosyan G., Tananaev I.G., Ustynyuk Yu.A., Khrustalev V.N., Katayev E.A. // Org.Biomol.Chem. - 2011.

 HReO_4 as a good template for macrocycle synthesis

- Two positive charges due to protonated imine fragments
- Pyrrolic and amide H-bonds bind each ReO₄⁻

Kolesnikov G.V., German K.E, Kirakosyan G., Tananaev I.G., Ustynyuk Yu.A., Khrustalev V.N., Katayev E.A. // Org.Biomol.Chem. - 2011.

	⁹⁹ Tc ЯМР, CDCl ₃	UV, dichloroethane
Imine-amide macrocycle	$log(\beta_{11}) = 3.2$	log(β ₁₁) = 5.1
Cyclo[8]pyrrole-2(HCl)	$\log(\beta_{12}) = 3.8$	$\log(\beta_{12}) = 6.0$

Kolesnikov G.V., German K.E, Kirakosyan G., Tananaev I.G., Ustynyuk Yu.A., Khrustalev V.N., Katayev E.A. // Org.Biomol.Chem. - 2011.

$^{99}\text{Tc-NMR}$ titration, $\text{Bu}_4\text{N}^+\,^{99}\text{TcO}_4^-$ in CDCI_3

Larger dendrimer and lower pH, lead to better extraction

Stephan H., Spies H., Johannsen B., Klein L., Vögtle F. // Chem.Comm. – 1999.

Solubility* of some TcO_4^- salts in H_2O

- More hydrophobic cation produces less soluble salt with TcO₄-
 - ${}^{99}\text{TcO}_4\text{Na}$ 11.3 Cl (NBu₄) 20.53
 - ${}^{99}\text{TcO}_4(\text{NMe}_4)$ 0.14 Br (NBu₄) 21.48
 - ⁹⁹TcO₄ (NBu₄) 4×10^{-3} I (NBu₄) 7×10^{-2}
 - ${}^{99}\text{TcO}_4(\text{TPG})$ 4×10⁻³
 - $^{99}\text{TcO}_4(\text{NHept}_4)$ **1×10**⁻⁵

TPG = triphenylguanidinium

*the concentration is given in mol/L

Rard J.A., Rand M.H., Anderegg G., Wanner H. Chemical thermodynamics Vol. 3. Chemical thermodynamics of Technetium. Sandino M.C.A., Osthols E., Eds.; Elsevier, 1999.

Receptor property	B	linding	Selectivity
• B igger size	=>	better	better
• More (+) charge	=>	better	worse
• More hydrophobic cavity	=>	better	better
• Excess of H-bond groups	=>	better	worse
• Harder to synthesize	=>	usually	/ better

Some important rules for hunting the ${\rm TcO_4^-}$ and ${\rm ReO_4^-}$

Thank you for your attention!

THE CHEMISTRY OF TECHNETIUM CHLORIDES

Alfred Sattelberger

Argonne National Laboratory. Argonne, IL USA

Almost every element in the periodic table has well-defined halide chemistry. Technetium, the first radioelement, is a notable exception. Prior to 2008, only 3 binary halides of technetium had been reported, viz., TcF_6 , TcF_5 and $TcCl_4$.

These compounds were prepared almost 60 years ago from the reactions of the metal with elemental fluorine or chlorine.

Since 2008, we have synthesized and characterized 4 new binary chlorides. The new chlorides can be binned into one of three categories:

(1) those that have a molybdenum and/or ruthenium analogue,

(2) those that have a rhenium analogue, and

(3) those for which no analogues with neighboring elements currently exist. The synthetic routes to the new halides and their relationship to molecular technetium systems will be described. Solid-state structures, thermal stabilities, and selected aqueous and non-aqueous chemistry will be discussed. The synthesis of new chloride starting materials opens up exciting new opportunities for exploring the synthetic and mechanistic chemistry of low-valent technetium, as well as the possibility of new applications for the nuclear fuel cycle.

The Chemistry of Technetium Chlorides

ISTR-2014

Al Sattelberger Argonne National Laboratory Argonne, IL USA

October 1, 2014

Decay Scheme for ⁹⁹Mo

- (1) It's central position amongst the transition elements
- (2) Nuclear medicine
- (3) Nuclear waste forms

"... As one dramatic contrast, thirteen binary halides have been reported for rhenium, but only three are known and well characterized for technetium, i.e., TcF_6 , TcF_5 , and $TcCl_4$.⁴ Other binary halides, new coordination compounds and organometallics will surely be discovered in the future but the pace of discovery is limited by the small number of operational technetium laboratories. ..."

F. Poineau, B. L. Scott, and A.P. Sattelberger, COMCIII, 2007

Binary Halides

- Transition metal binary halides MX_n (X = halide, and n = 1-7)
- More than two hundred are known (e.g., 13 for Re)
- Only three Tc binary halides, viz., TcCl₄, TcF₅ and TcF₆, known prior to 2008

 $TcCl_4$: Tc + xs $Cl_2 \xrightarrow{\Delta} TcCl_4$ (ReCl₅)

Infinite chains of edge-sharing TcCl₆ octahedra (1957)

 TcF_6 : Tc + xs $F_2 \xrightarrow{\Delta} TcF_6$

Molecular TcF₆ (1961)

 TcF_5 : $Tc + N_2/F_2 \xrightarrow{\Delta} TcF_5$

Chains of TcF_6 octahedra (1963)

Experimental Approach - I

Stoichiometric reactions between the halogen and Tc metal at elevated temperature

Sealed tube reactions (Tc:X - 1:2, 1:3, 1:4+) have not been reported for Tc

Technetium Dioxide and Tc Metal

Experimental Approach - II

Reaction between a preformed M-M bonded dimer and HX(g)

Molybdenum: Mo₂(OAc)₄ $\rightarrow \beta$ -MoX₂; Rhenium: Re₂(OAc)₄X₂ \rightarrow Re₃X₉

G. Wilkinson, R. E. McCarley, R. A. Walton and coworkers

Not reported for $Tc_2(OAc)_4X_2$ (X = Cl, Br)

Red-orange crystals, 80%

(1) L. I. Zaitseva, A. S. Kotel'nikova and A. A. Reszvov, *Russ. J. Inorg. Chem.* **1980**, *25*, 1449 (2) W. M. Kerlin, et al., *Polyhedron* **2013**, *58*, 115-119

Technetium Tetrachloride

Tc metal plus Cl₂ (1:3) sealed tube at 450 °C for 14 h

Transition Metal Tetrachloride Structure Types

11

Technetium Trichloride

Reaction between $Tc_2(OAc)_4Cl_2$ and HCl(g) at $300^{\circ}C$

Formation of TcCl₃ occurs in two steps:

Characterization of Tc₂Cl₄(OAc)₂

F. Poineau, et al., Polyhedron, 2014, 70, 144-147

Technetium Trichloride

Reaction between Tc metal and 1.5 Cl_2 in sealed tube at 450°C for 24 hrs

Resublimed crystals of TcCl₃

Dist. (Å)	M oCl ₃	TcCl₃	RuCl₃
М-М	2.757(3)	2.857(1)	3.44(1)
м…м	3.714(3)	3.613(2)	3.45(1)
ΔMM	0.957(4)	0.756(2)	0.01(1)

F. Poineau, et al., Inorg. Chem. 2012, 51, 4915-17

Interconversion of TcCl₃ Polymorphs

Technetium Dichloride

Reaction between Tc metal and Cl_2 in sealed tube (Tc:Cl ~ 1:2)

Characterization of TcCl₂ by single crystal XRD

TcCl₂: Infinite chains of face-sharing Tc₂Cl₈ rectangular prisms

2.129

Cl

- $[Tc_2Cl_8]$ eclipsed geometry (Tc-Tc = 2.129 Å)
- · Tc≡Tc triple bond
- · Natural bond orbital (NBO) occupancy: 5.3

TcCl₂ exhibits a new binary halide structure type
Highest bond multiplicity reported for a binary halide

C. D. Malliakas, et al., J. Am. Chem. Soc. 2013, 135, 15955-15962

(A) α -TcCl₂; (B) β -TcCl₂; (C) β -MoCl₂; (D) α -MoCl₂, α -WCl₂; (E) α -PtCl₂, α -PdCl₂, δ -PdCl₂; (F) γ -PdCl₂; (G) β -PdCl₂, β -PtCl₂; (H) ZrCl₂

Comparison with Neighboring Elements

Gans	in	tho	Periodic	Tahla
Gaps	III	une	reriouic	Table

MoCl ₂	TcCl ₂	Ru: ?	Rh:?	PdCl ₂
WCl ₂	Re: ?	Os: ?	Ir: ?	PtCl ₂

1:1 reactions between Cl₂ and metal (Re, Ru, Mo) at 450°C

 $Re + Cl_2 \rightarrow ReCl_5 + Re$ $Ru + Cl_2 \rightarrow RuCl_3 + Ru$ $Mo + Cl_2 \rightarrow MoCl_3 + Mo$

Powder pattern after reaction of Ru metal with Cl_2 at 450°C Simulated XRD pattern of: RuCl₃ (in blue) and Ru metal (in red)

Technetium appears to exhibit unique behavior • Stochiometric reaction or decomposition of TcCl₄ or TcCl₃?

Technetium Synthesis Group

Acknowledgments

Paul Forster Brian Scott Laura Gagliardi Tanya Todorova Steve Conradson Phil Weck Eunja Kim Lonzhou Ma Christos Malliakas Mercouri Kanatzidis

Tom O'Dou Trevor Low Julie Bertoia

Funding for this research was provided by a grant from the U.S. Department of Energy under Contract No. 47824B

Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

Synthesis and Characterization of Binary Technetium Bromides and Iodides

Erik Johnstone^{1,2}, Frederic Poineau², Paul M. Forster², Alfred P. Sattelberger^{2,3}, and Kenneth R. Czerwinski²

¹ Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. ² Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV, USA.

³ Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Lemont, IL, USA.

Technetium (Z = 43) is the lightest element on the periodic table with no stable isotopes. It is produced in nuclear fuels as a primary fission product in ~6% yield, and yet many of the fundamental facets of transition metal chemistry have not been explored for technetium. An example of this is was the deficiency of the binary technetium halide chemistry prior to 2008, which consisted of only three known compounds (i.e., TcF6, TcF5, and TcCl4) that did not include any bromine or iodine derivatives. In this work the synthesis of novel binary technetium bromides and iodides was explored in the solid state and their chemistries investigated by means of thermal stability, solubility, and physical properties studies. Furthermore, these compounds were characterized using various physicochemical methods including single-crystal and powder X-ray diffraction (XRD), IR spectroscopy, X-ray absorption fine structure (XAFS), and elemental analysis to determine structural and compositional properties.

Solid-State Investigations of the Heavier Binary Technetium Halides: Synthesis and Characterization

Erik V. Johnstone¹, Frederic Poineau², Thomas Hartmann², Paul M. Forster¹, Kenneth R. Czerwinski², and Alfred P. Sattelberger^{2,3}

¹ Helmholtz-Zentrum Dresden Rossendorf, Dresden, Germany
 ² Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV
 ³ Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Argonne, IL

International Symposium on Technetium and Rhenium 2014 Pornichet, France

Outline

I. Introduction

Binary Transition Metal Halides Binary Technetium Halides

- II. Experimental Methods Tc Bromides Tc Iodide
- III. Conclusions
- IV. Future Work
- V. Acknowledgements

Transition Metal Binary Halides

More than 200 are known Applications as inorganic precusors, catalysts, and materials

Cotton, F. A. Advanced Inorganic Chemistry, 6th ed.; John Wiley and Sons: New York, 1999.

1/10/2014

Erik V. Johnstone ISTR 2014

Transition Metal Binary Halides

Structure-types

Molecular			Infinite Chain				Cluster		
Monomeric	Dimeric	Trimeric	Tetrameric	Corner- sharing	Edge- sharing	Face- sharing	Layered	Trinuclear	Hexanuclear
$MF_6, M = Mo, W,$ Tc, Re, Ru, Os, Ir, Pt	$\begin{array}{l} M_2Cl_{10},\\ M=\\ Nb, Ta,\\ Mo, W,\\ Re \end{array}$	((RuF ₅) ₃)	((MF ₅) ₄), M = Nb, Ta, Mo, Ru, Os	MF ₅ , M = Tc, Re	$MCl_4, M = Zr, Hf, Nb, Ta, Mo, W, Tc, Os, Pt; MBr_4, M = Tc, Os, Pt$	$\begin{array}{l} MBr_3,\\ M=\\ Mo,\\ Ru;\\ MI_3, M\\ = Zr,\\ Hf, Nb,\\ Mo,\\ Ru, Os \end{array}$	α -MCl ₃ M = Mo, Ru; β -Mocl ₄	$Re_{3}X_{9},$ $M_{3}X_{8}, M$ $= Nb, Ta$	$M_{6}X_{12}, M = M_{0}, W;$ $M_{6}X_{14}, M = N_{0}, T_{0}, M_{0}, T_{0}, M_{0}, M_$

Canterford, J. H.; Colton, R. Halides of the Second and Third Row Transition Metals; John Wiley and Sons: New York, 1968.

Transition Metal Binary Halides

Technetium \rightarrow Only 3 known prior to 2008: TcF₆ (1961), TcF₅ (1963), and TcCl₄ (1957)

Colton, R. *Nature*, **1962**, *193*, 872. 1/10/2014

Edwards, A. J.; Hugill, D.; Peacock, R. D. *Nature*. **1963**, 200, 672. Selig, H.; Chernick, C. L.; Malm, J. G. *J. Inorg. Nucl. Chem.* **1961**, *19*, 377. Erik V. Johnstone ISTR 2014

Transition Metal Binary Halides

Technetium \rightarrow With additions of TcBr₄, TcBr₃, α/β -TcCl₃, and α/β -TcCl₂ there are 9 known

Rhenium \rightarrow 15 reported binary halides

Oxidation state	Fluorides	Chlorides	Bromides	Iodides
Ι	-	-	-	ReI
II	-	α/β -TcCl ₂	-	ReI ₂
III	-	$\frac{\alpha/\beta\text{-TcCl}_3}{\text{Re}_3\text{Cl}_9}$	TcBr ₃ , Re ₃ Br ₉	Re ₃ l ₉
IV	ReF ₄	TcCl ₄ , ReCl ₄	TcBr ₄ , ReBr ₄	ReI ₄
V	TcF_5 , ReF_5	ReCl ₅	ReBr ₅	-
VI	TcF_6 , ReF_6	ReCl ₆	-	-
VII	ReF ₇	-	-	-

Synthesis and Characterization of Technetium Bromides and Iodides

Research Questions

- 1. How can binary technetium bromides and iodides be prepared?
- 2. What structural and physical properties of these materials will be observed?
- 1. How will these compounds compare with similar ones of neighboring elements?

Binary Transition Metal Chlorides, Bromides, Iodides

Preparative Methods:

1) Reaction of the elements, i.e., $M + X_2 \rightarrow MX_n (X = Cl, Br, I)$

2) Reaction of molecular dimer and flowing HX(g), i.e., $M_2(O_2CCH_3)_4Cl_2 + HX(g)$ (X = Cl, Br, I)

3) Thermal decompositions under vacuum, i.e., $MX_n \rightarrow MX_{n-y} + X_2$

Preparation of Precursors

Purification of ammonium pertechnetate

Dissolution/Oxidation in H₂O/NH₄OH/H₂O₂

Preparation of Precursors

TcO₂

NH₄TcO₄

Tc Metal

Preparation of Precursors

Synthesis of Bis(µ-tetraaceate)dichloride ditechnetate

```
(n-\mathrm{Bu}_4\mathrm{N})_2\mathrm{Tc}_2\mathrm{Cl}_8 + 4\ \mathrm{CH}_3\mathrm{COOH} \rightarrow \mathrm{Tc}_2(\mathrm{O}_2\mathrm{CCH}_3)_4\mathrm{Cl}_2 + 2\ (n-\mathrm{Bu}_4\mathrm{N})\mathrm{Cl} + 4\ \mathrm{HCl}
```


Cotton, F. A.; Bratton, W. K. J. Am. Chem. Soc. 1965, 87, 921.

Kerlin, W. M, et. al. Polyhedron. 2013, 58, 115-119.

Synthesis of TcBr₄

 $Tc + 2 Br_2 \rightarrow TcBr_4$

TcBr₄

Binary Technetium Bromides

Poineau, F. et. al. J. Am. Chem. Soc. 2009, 131, 910-911.

Thermal decomposition of TcBr₄

Johnstone, E. V. et. al., A. P. Inorg. Chem. 2013, 52(10), 5660-5662.

Binary Technetium Bromides

Compound	Tc _A -Tc _A	Tc _A -Tc _B	Tc-Br _T	Tc–Br _B
$Na{[Tc_6Br_{12}]_2Br}$	2.6845(5)	2.1735(5)	2.4966(8)	2.4738(7)
$(Et_4N)_2\{[Tc_6Br_{12}]Br_2\}^{\mathfrak{v}}$	2.66(2)	2.188(5)	2.50(1)	2.49(1)
Tc_6Br_{12}	2.720	2.173	2.479	2.494

Johnstone, E. V. et. al., A. P. Inorg. Chem. 2013, 52(10), 5660-5662.

Synthesis of TcBr₃ I. $Tc + 3/2 Br_2 \rightarrow TcBr_3$ I. $Br_2 1:3$ T = 400 °C Tc metal $TcBr_3$ II. $Tc_2(O_2CCH_3)_4Cl_2 + 6 \text{ HBr } (g) \rightarrow 2 \text{ TcBr}_3 + 4 \text{ CH}_3\text{COOH} + 2\text{HCl}$ $II. Tc_2(O_2CCH_3)_4Cl_2 + 6 \text{ HBr } (g) \rightarrow 2 \text{ TcBr}_3 + 4 \text{ CH}_3\text{COOH} + 2\text{HCl}$ $II. Tc_2(O_2CCH_3)_4Cl_2 + 6 \text{ HBr } (g) \rightarrow 2 \text{ TcBr}_3 + 4 \text{ CH}_3\text{COOH} + 2\text{HCl}$

Poineau, F. et. al. J. Am. Chem. Soc. **2009**, 131, 910-911.

Binary Technetium Bromides

Structure of TcBr₃

- Distorted Til₃ structure-type: infinite chains of face-sharing TcBr₆ octahedra
- Regular alternation of short and long Tc-Tc distances is observed
 - Shorter separations are consistent with the presence of Tc-Tc bonding
- Isomorphous with RuBr₃ and MoBr₃

Image (x35) of needles and clusters 10 to 100 μ m

Tc-Tc separations = 3.1434 Å and 2.8283 Å

Poineau, F. et. al. J. Am. Chem. Soc. 2009, 131, 910-911.Lin, J.; Miller, G. J. Inorg. Chem. 1993, 32, 1476-1487.

Thermal decomposition of TcBr₃

Binary Technetium Bromides

0

Binary Technetium Iodide

Synthesis of TcI₃

I.

 $Tc + 3/2 I_2 \rightarrow TcI_3$

II.

$Tc_2(O_2CCH_3)_4Cl_2 + 6 HI (g) \rightarrow 2 TcI_3 + 4 CH_3COOH + 2HCl$

 $150 \text{ and } 300 \,^{\circ}\text{C}$

HI(g)

Johnstone, E. V., et. al. Inorg. Chem. 2013, 52(24), 14309-14316.

Binary Technetium Iodide

Structure of TcI₃

Johnstone, E. V., et. al. Inorg. Chem. 2013, 52(24), 14309-14316.

Binary Technetium Iodide

Johnstone, E. V., et. al. Inorg. Chem. 2013, 52(24), 14309-14316.

Future Work

We have only scratched the surface of the binary technetium halides.

What other synthetic routes can be investigated?

How can we begin to better study these reaction mechanisms?

How can these be used for other Tc chemistry?

How can these serve for potential materials in industry and applications?

Acknowledgements

UNLV Radiochemistry Department

Technetium Synthesis Group

Dr. Ken Czerwinski, Dr. Alfred Sattelberger, and Dr. Frederic Poineau Romina Farmand, Jenna Starkey, Jeremy Hilgar Tom O'Dou, Julie Bertoia, and Trevor Low for Radiation Safety

SISGR-Fundamental Chemistry of Technetium-99 Incorporated into Metal Oxide, Phosphate and Sulfide: Toward Stabilization of Low-Valent Technetium Contract No. 47824B Basic Energy Sciences, DOE

Questions

ISTR 2011 Moscow, Russia

DINUCLEAR TECHNETIUM COMPLEXES WITH MULTIPLE METAL-METAL BONDS

Poineau F.*, Forster P.M.*, Todorova T.K.**, Johnstone E.V.*, Kerlin W.M.*, Gagliardi L.***, Czerwinski K.R.*, Sattelberger A.P.***

^{*}Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 89154, USA. E-mail: poineauf@unlv.nevada.edu

**Department of Physical Chemistry University of Geneva, CH-1211, Geneva, Switzerland

***Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA

****Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Argonne, IL 60439, USA

Transition metal complexes with multiple metal-metal bonds exhibit interesting catalytic and biological properties. One element whose metal-metal bond chemistry has been poorly studied is technetium. Currently, only 25 technetium complexes with multiple metal-metal bond complexes are structurally characterized. The nature of metal-metal bonding in these complexes, as well as the influence of ligands on the bonding in the Tc_2^{n+} unit (n = 6, 5, 4) are not well understood. In order to better understand the influence of ligands on the Tc-Tc bonding, a study of the solid state and electronic structure of dinuclear complexes with the Tc_2^{n+} unit (n= 6, 5, 4) has been performed. complexes $(n-Bu_4N)_2Tc_2X_8$, The dinuclear technetium $Tc_2(O_2CCH_3)_4X_2$, $Tc_2(O_2CCH_3)_2Cl_4$, cesium salts of $Tc_2X_8^{3-}$, and $Tc_2X_4(PMe_3)_4$ (X = Cl, Br) were synthesized; their molecular electronic structure, as well as the electronic absorption were studied by a number of physical and computational techniques. The structure and bonding in these systems has been investigated using multiconfigurational quantum calculations. For all these complexes, the calculated geometries are in very good agreement with the one determined experimentally. Bond order analysis demonstrates that all these complexes exhibit a total bond order of ~3. Analysis of individual effective bond order components shows that these complexes have similar σ components while the strength of the π components follow the order Tc₂X₄(PMe₃)₄ > Tc₂X₈³⁻> $Tc_2(O_2CCH_3)_2Cl_4 > Tc_2X_8^{2-}$ Calculations indicate the δ components to be the weakest bond in $Tc_2X_8^{n-}$ (n = 2, 3) and $Tc_2(O_2CCH_3)_2Cl_4$. Further analysis on $Tc_2X_8^{3-}$ and $Tc_2X_4(PMe_3)_4$ (X = Cl, Br) indicates that the electronic structure of the Tc_2^{5+} and Tc_2^{4+} units is insensitive to the nature of the coordinating ligands.

Dinuclear Technetium Complexes with Multiple Metal-Metal Bonds

<u>Frederic Poineau</u>¹, Paul M. Forster¹, Tanya K. Todorova², Eric V. Johnstone³, William M. Kerlin¹, Laura Gagliardi⁴, Kenneth R. Czerwinski¹ and Alfred P. Sattelberger⁵

¹ Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV 89154

² Laboratory for Computational Molecular Design, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015

³ Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

⁴ Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455

⁵ Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Argonne, IL 60439

1

Technetium

Element 43, Group 7- second row transition metal

✤1869: Predicted by D. Mendeleev

~~	2.5	44	LJ	20	21	20	2.5	30
Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
47.867	50.9415	51.9961	54.938	55.845	58.9332	58.6934	63.546	65.4089
Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
40	41	42	43	44	45	46	47	48
Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd
91.224	92.9064	85.94	98	101.07	102.9055	106.42	107.8682	112.411
Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rbodium	Palladium	Silver	Cadmium
72	73	74	75	76	77	78	79	80
Hf	Та	W	Re	Os	lr	Pt	Au	Hg
178.49	180.9497	183.84	186.207	190.23	192.217	195.084	196.9666	200.59
Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury

22 23 24 25 26 27 28 20 30

✤1934: Predicted to have no stable isotope (Mattauch rule)

*1937: Discovered by E. Segre and C. Perrier

Irradiation of molybdenum plate at Berkeley cyclotron

Technetium chemistry

Electronic structure	42 Mo	43 Tc	44 Ru			
Tc and Re shar → Similar coord	85.94 Molybdenum 74 W 183.84 Tungsten	98 Technetium 75 Re 186.207 Rhenium	101.07 Ruthenium 76 OS 190.23 Osmium			
Binary halides	Metal-metal bonded dimers	Hepta	valen	t com	plexe	s
++			•		•	

 MO_4

🔧 🔩 🧏 → 🎗 🏅 δ

 $Tc_2Br_4(PMe_3)_4$

× • × → ** × • × → **

Tc coordination chemistry less developed than Re (as of 2008)

 $M_{2}Cl_{8}^{2-}$

	Binary halides	Metal-metal bonded dimers	Heptavalent complexes
Tc	3	27	30
Re	15	500	150

Understand fundamental chemistry of Tc

- Improve nuclear fuel cycle applications
- Development of new imaging agents

Metal-metal bonded dimers: M_2^{n+} units coordinated to ligands In the M_2^{n+} : d orbitals can overlap and form σ , π and δ bonds

MF₅

quadruple bond

5 compounds

Bond order of 3.5

14 compounds

For Tc_2^{4+}

δ*

δ

π

8 compounds

✤Synthetic and coordination chemistry not well developed No organometallic dinuclear complexes known

Preparation of $Tc_2Cl_8^{2-}$ complicated (5 days, yield ~ 30 %)

♦ Relation between structure and bonding not well understood

It can be expected than complexes with high B.O will have short metal-metal separation $Mo_2(SO_4)_4^{4-}$: B.O = 4, Mo-Mo ~ 2.11 Å | $Mo_2(SO_4)_4^{3-}$: B.O = 3.5, Mo-Mo ~ 2.17 Å

***** Technetium complexes with high B.O have long metal-metal separation $Tc_2Cl_8^{2-}$: B.O = 4, Tc-Tc ~2.16 Å | $Tc_2Cl_8^{3-}$: B.O = 3.5, Tc-Tc ~ 2.12 Å

Goal: Expand the chemistry of dinuclear Tc complexes ➤ Prepare new compounds ➤ Study of structure, bonding and spectroscopic properties

Study of complexes with Tc₂⁶⁺ unit: (TBA)₂Tc₂X₈, Tc₂(OAc)₄Cl₂, Tc₂(OAc)₂Cl₄ Tc₂⁵⁺ unit: Cs_{2+x}H₃O_(1-x)Tc₂Br₈

Outline

I. Preparation of dinuclear Tc complexes

II. Crystallographic Structure

III. Electronic Structure and Spectroscopy

IV. Summary

I. Preparation of dinuclear Tc complexes

Preparation of Tc₂Cl₈²⁻

Successive reductions: $Tc(VII) \rightarrow Tc(V) \rightarrow Tc(III)$

 $(TBA)_2Tc_2Cl_8$

Preparation of complexes with Tc₂⁶⁺ and Tc₂⁵⁺ units

Reaction mechanisms from (TBA)₂Tc₂Cl₈ to Tc₃Cl₉ mimic the one of Re

II. Crystallographic Structure

Tc₂X₈²⁻

Crystallization from acetone / ether for single crystal XRD → Formation of an acetone solvate: (TBA)₂Tc₂X₈· 4[(CH₃)₂CO]

Eclipsed TcX₄ units

Anions	Tc-Tc (Å)	<tc-tc-x> (°)</tc-tc-x>
Tc ₂ Br ₈ ²⁻	2.1625(9)	105.01(3)
Tc ₂ Cl ₈ ²⁻	2.1560(3)	103.92(2)

• Steric effect induced by bromide in Tc₂Br₈²⁻ ion Increase of Tc-Tc separation and Tc-Tc-X angle

Poineau, F., et al. Dalton Trans. (2009) 30, 5954.

Poineau, F., et al. J. Am. Chem. Soc. (2010) 132, 15864.

Kerlin, W., et al. Polyhedron (2013) 58, 115.

Compounds	Tc-Tc (Å)	Tc-X (Å)
Tc ₂ (OAc) ₄ Cl ₂	2.176(1)	2.508(4)
Tc ₂ (OAc) ₂ Cl ₄	2.150(1)	2.312

Decrease of Tc-Tc from Tc₂(OAc)₄Cl₂ to Tc₂(OAc)₂Cl₄ influence of axial Cl ligand on Tc-Tc separation

Tc₂X₈³⁻

Crystallization in concentrated HBr for single crystal XRD → Formation of hydrate: $[Cs_{(2+x)}][H_3O_{(1-x)}]Tc_2Br_8 \cdot 4.6H_2O$ (x = 0.221)

• Steric effect induced by bromide in $Tc_2Br_8^{3-}$ Internal rotation angle in $Tc_2Br_8^{3-}$ (4.86 °) d(Tc-Tc) in $Tc_2Br_8^{3-}$ is ~ 0.04 Å shorter than in $Tc_2Br_8^{2-}$

* Cotton, F. A., et al. Inorg. Chem. (1975) 14, 2032.

Poineau, F., et al. Dalton Trans. (2012) 41, 2869.

III. Electronic Structure and Spectroscopy

Tc-Tc bonding quantified in terms of effective bond order (EBO): $(\eta_b - \eta_a)/(\eta_b + \eta_a)$

 η_b : occupation number for the Tc-Tc bonding orbital η_a : occupation number for the Tc-Tc antibonding orbital

Active orbitals and their occupation numbers for $Tc_2X_8^{3-}$ (X = Cl, Br)

			Total P.O.		
	1c-1c (A)	σ	π	δ	Total D.O
Tc ₂ (OAc) ₄ Cl ₂	2.176(1)	0.90	1.63	0.55	3.08
Tc ₂ Br ₈ ²⁻	2.1625(9)	0.88	1.69	0.50	3.07
Tc ₂ Cl ₈ ²⁻	2.1560(3)	0.88	1.68	0.47	3.03
$Tc_2(OAc)_2Cl_4$	2.150(1)	0.90	1.71	0.59	3.20
Tc ₂ Br ₈ ³⁻	2.1265(9)	0.89	1.74	0.41	3.04
Tc ₂ Cl ₈ ³⁻	2.117(4)	0.89	1.74	0.41	3.04

• Total bond order in $Tc_2X_8^{n-}$ are similar (~3)

Changing electronic structure $\sigma^2 \pi^4 \delta^2$ to $\sigma^2 \pi^4 \delta^2 \delta^*$ has a negligible effect on the total bond order

• Strength of bonding follow order: $\pi > \sigma > \delta$

 σ bond: similar strength

 π bond: stronger bond \rightarrow Tc-Tc separation correlated to the strength of π bond δ bond: weaker bond \rightarrow internal rotation angle in Tc₂X₈³⁻

Spectroscopic study on Tc₂X₈²⁻ and Tc₂(OAc)₂Cl₄

Attribution of transition based on quantum calculations

> Effect of the Tc-Tc separation on the position of $\delta \rightarrow \delta^*$ transition

Spectroscopic study on Tc₂X₈³⁻

UV-visible spectra of $Tc_2X_8^{3-}$ in concentrated HX (X= Cl, Br)

IV. Summary

★ Technetium dinuclear complexes with multiple Tc-Tc bonds Four complexes characterized: $(TBA)_2Tc_2X_8$, $Tc_2(OAc)_4Cl_2$, $Tc_2(OAc)_2Cl_4$, $Cs_{2+x}(H_3O)_{1-x}Tc_2Br_8$ Mimic the Re reaction: $M_2Cl_8^{2-} \rightarrow M_2(OAc)_4Cl_2 \rightarrow M_2(OAc)_2Cl_4 \rightarrow M_3Cl_9$

* d(Tc-Tc) in Tc₂⁶⁺ unit is sensitive to the position and nature of ligand

Bromide vs chlorine: steric effect Axial vs equatorial: trans-effect

Complexes with Tc₂⁶⁺ units have longer d(Tc-Tc) that those with Tc₂⁵⁺ units Tc-Tc separation correlated to the strength of \pi bond Strength of bonding follow order: \pi > \sigma > \delta

* Effect of the Tc-Tc separation on the position of the $\delta \to \delta^*$ transition

Acknowledgments

Julie Bertoia and Trevor Low Radiation protection and laboratory management

Funding for this research was provided by a SISGR Grant from the U.S. Department of Energy under Contract No. 47824B.

Questions

Radiochemistry Program at the University of Nevada Las Vegas

> For more information, please visit http://Radchem.nevada.edu

Polynuclear Technetium Iodides Compounds with Multiple Metal-metal Bonds

W.M. Kerlin[†], F. Poineau[†], C. Malliakas[‡], P.M. Forster[†], A.P. Sattelberger^{§,†,‡}, K.R. Czerwinski[†]

[†] Department of Chemistry, Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, NV 89154, USA [‡]Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA [§] Argonne National Laboratory, Argonne, IL 60439, USA

A new solvothermal synthesis route for the preparation of Technetium extended metals atoms chains (EMAC) and clustershave been developed.Technetium EMAC ($Tc_2(\mu-O_2CCH_3)_4I$) and Tc-iodide clusters(K[Tc_8I_13] and Tc_5I_13) were prepared form the reaction of potassium pertechnetate with glacial acetic acid plus either hydroiodic acid or iodide salts under *in-situ* hydrogen production by sodium borohydride at various temperatures yields. These compounds were characterized by single crystal X-ray diffraction and their structures will be presented. In the solvothermal reaction the oxidation state of the Tc atoms in the reaction products also dependent on temperature and pH of the starting solutions and will be explained in extensive detail. Magnetic susceptibility measurements have been conducted and will presented. These complexes mightfound in applications in the nuclear industry (waste forms) and in the radiopharmaceuticals industry as imaging agents.

Keywords: technetium carboxylates; metal-metal bonds; metal-halogen bond; hydro/solvo-thermal reactions; polymers; characterization(SC-XRD).

Polynuclear Technetium Iodides Compounds with Multiple Metal-metal Bonds

William M. Kerlin¹

C. Malliakas, F. Poineau¹, P. M. Forster¹, A.P. Sattelberger², K.R. Czerwinski¹

¹Department of Chemistry, Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, NV ²Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA ³Energy Engineering and Systems Analysis Directorate, Argonne National Laboratory, Argonne, IL

> University of Nevada Las Vegas, Radiochemistry 8th International Symposium on Technetium & Rhenium 2014 Pornichet La Baule, France Oct. 1st 2014

Overview

- Introduction
- Experimental Methods
- Results
- Conclusion
- Future Studies

Pharmaceuticals Applications

- Dichlorotetra-µ-Isobutyratodirhenium(III)
 - Re-Re metal-metal bond
- Stabilizing red blood cells
- Anti-tumor/cancer properties
 - Seen High Effectiveness in
 - Sarcoma S-180
 - Leukemia P-388
 - Melanoma B-16

Shtemenko, N., P. Collery, and A. Shtemenko, Anticancer Research 27: 2487-2492 (2007)

Technetium Metal-Metal dimers

- Quadruple Metal-Metal dimers
 - Cotton, A. 1964, Re₂Cl₈-2
 - Cotton, A. 1977, $Tc_2(O_2CMe_3)_4Cl_2$
 - Cotton, A. 1981, Tc₂Cl₈⁻²
- Known Tc compounds of Acetate Dimers

- $Tc_2(\mu-O_2CCH_3)_4X_2$ (X= Cl, Br)
- $Tc_2(\mu$ - $O_2CCH_3)_2Cl_2 \cdot (dma)_2$
- $Tc_2(\mu O_2CCH_3)_2Cl_2 \cdot (H_2O)_2$
- $Tc_2(\mu-O_2CCH_3)_4(TcO_4)_2$

 $- Tc_2^{+5} core$

- $Tc_2(\mu O_2CCH_3)_4X$ (X = Cl, Br)
- K[Tc₂(μ-O₂CCH₃)₄Cl₂]

F. A. Cotton, C. A. Murillo, R. A. Walton (Eds), Springer, New York 2005 A.P. Sattelberger, in Multiple Bonds between Metal Atoms, Chapter 7, 3rd Ed.,

Polynuclear Halide Clusters: (~10 structures)

- Tc -Chloro, -Bromo
 - Hexa
 - $[Tc_6(\mu-Cl)_6Cl_6]^{2-}$, $\{[Tc_6(\mu-Cl)_6Cl_6]Cl_2\}^{3-}$
 - {[$Tc_6(\mu-Br)_6Br_6$]₂Br}⁻, {[$Tc_6(\mu-Br)_6Br_6$]Br₂}²⁻, {[$Tc_6(\mu-Br)_6Br_6$]Br₂}³⁻
 - Octa
 - $[H(H_2O)_2]{[Tc_8(\mu-Br)_8Br_4]Br}, [H(H_2O)_2]_2{[Tc_8(\mu-Br)_8Br_4]Br_2}$
 - {[Tc₈(μ -Br)₈Br₄]Br}·2H₂O
- Tc- lodo
 - $\ \{[Tc_6(\mu-I)_6I_6]I_2\}^{3-}$
 - $\ \{[Tc_8(\mu\text{-Br})_4(\mu\text{-I})_4Br_2I_2]I_2\}^{2-}$

Experimental Method

Conventional Preparation: Tc₂(O₂CCH₃)₄Cl₂

Autoclave Systems: Our Tools

Parr 5500 Series High Pressure Controlled Atmosphere Autoclave

- Max. Temp. 350 °C
- Max. Pressure
 - 200 atm
- Volume
 - 300 mL
- Atmosphere
 - Inert
 - Reducing

Two Synthesis Routes: Tc₂(µ-O₂CCH₃)₄Cl₂

• L. I. Zaitseva, A.S. Kotel'nikova and A.A. Reszvov, Russ. J. Inorg. Chem. 1980, 25, 1449

• W.M. Kerlin, et.al. Polyhedron, 2013, 58, 115-119

Τc ₂ (μ-Ο	₂ CCH ₃) ₄ C	l ₂ 1	Γc ₂ (μ-Ο ₂ C	CH ₃) ₄ Br ₂		
2.1758 A	2 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	54 Å 2.5078 Å 2.0034 Å			2.0259 Å	
Compound	d M-M	d M-X	d M-O	M-M-X	0-M-0	
$Tc_2(\mu-O_2CCH_3)_4Cl_2$	2.1758(3)	2.5078(4)	2.0211(12)	171.903(13)	90.63(4)	
$Tc_2(\mu-O_2CCH_3)_4Br_2$	2.1764(3)	2.6554(3)	2.0189(14)	173.564(12)	90.65(6)	
$Tc_2(\mu-O_2CC(CH_3)_3)_4Cl_2$	2.192(2)	2.408(4)	2.032(4)	180.00	90.67(11)	
Re ₂ (µ-O ₂ CCH ₃) ₄ Cl ₂	2.224(4)	2.5213(4)	2.0181(14)	176.519(5)	90.074(5)	

Synthesis: $Tc_2(\mu - O_2CCH_3)_4 - \eta - O_2CCH_3$

- $KTcO_4 + HC_2H_3O_2 + KF + NaBH_4 \longrightarrow Tc_2(\mu O_2CCH_3)_4F_2$
- $KTcO_4 + HC_2H_3O_2 + NaBH_4 \longrightarrow Tc_2(\mu O_2CCH_3)_5$
 - ▶ Final Pressure at 210 °C approx. 70 atm, 72 hrs.
 - ► Synthesis at temperature between 120 210 °C

XRD, Single Crystal

- Space Group: Monoclinic Cc
- Unit Cell: a= 13.0686(4) b= 8.3444(3) c= 15.0232(5) $\alpha = \gamma = 90^{\circ} \beta = 106.19^{\circ} V = 1573.2 \text{ Å}^3$

Yield: 73%

Tc₂⁺⁵ core

Reactions with Other Carboxylic Acids?

Synthesis: $Tc_2(\mu - O_2CCH_3)_4I$

 $KTcO_4 + NaI + HC_2H_3O_2 + NaBH_4 \longrightarrow Tc_2(\mu-O_2CCH_3)_4I$

Conditions

- 2:1 ratio Nal: TcO₄-
- 120 °C for 72 hrs

Yield: 60%

 $Tc_{2}(\mu-O_{2}CCH_{3})_{4}Cl$ Kozmin P. A., et. al., 1981 $Tc_{2}(\mu-O_{2}CCH_{3})_{4}Br$ Kozmin P. A., et. al., 1983

Synthesis from $K_3Tc_2X_8$

Space Group: Monoclinic C2/m Unit Cell: a= 7.2002(8) b= 14.5629(17) c= 7.1549(8) α = γ =90° β =110.89° V= 700.91 Å³

Comparison Halide Polymer Linkage Tc₂⁺⁵ core, Bond Order 3.5

	Tc-Tc (Å)	Tc-O(eq)(Å)	Tc-L(ax) (Å)	Reference
${}^{\dagger}Tc_{2}(\mu\text{-}O_{2}CCH_{3})_{4}\eta\text{-}Cl$ Chloro	2.117 (1)	2.066 (5)	2.656 (1)	Kozmin et. al. 1981
$Tc_2(\mu-O_2CCH_3)_4\eta-Br$ Bromo	2.112 (1)	2.060 (4)	2.843 (1)	Kozmin et. al. 1983
$\begin{array}{l} Tc_2(\mu\text{-}O_2CCH_3)_4\eta\text{-}I\\ Iodo \end{array}$	2.1146 (4)	2.0553 (13)	3.0114 (3)	Kerlin et. al. 2014 This Work

P.A Koz'min, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1981, 7, 1719.
 P.A Koz'min, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1983, 9, 1114.

W. M. Kerlin, F. Poineau, P. M. Forster, K. R. Czerwinski, and A. P. Sattelberger, Inorg. Chim. Acta, 2014. DOI: 10.1016/j.ica.2014.09.024

Synthesis: М[**Tc**₈**I**₁₂]**I** м = Na, к

$K[Tc_8(\mu-I)_8I_4]I$

Potassium – Orange Technetium – Turquoise Iodine – Purple

Monoclinic P2₁/n a = 8.0018(5) Å, b = 14.5125(10) Å, c = 13.1948(9) Å $\beta = 102.3090(10)^{\circ}$

Hexa- Octanuclear Tc Clusters

	Тс-Тс	Tc-X _{term}	Tc-X _{Bri}	Tc-X _{cap}	Reference
K[Tc ₈ (μ-I) ₈ I ₄]Ι	2.164/3/, 2.5308(8), 2.72/3/	2.731/12/	2.68/3/	3.187/53/	This Work Kerlin, et al. 2014
$[FeCp_2]_3 \{Tc_6(\mu-I)_6I_6]I_2\}$	2.18(1), 2.67(1)	2.71(1)	2.61/2/	3.26(2)	Grigoriev 1993
[H(H ₂ O) ₂]{[Tc ₈ (μ-Br) ₈ Br ₄]Br}	2.155/3/, 2.531/2/ 2.70/2/	2.53/2/	2.51/2/	2.99/7/	Koz'min et al. 1982 Kryuchkov, et al. 1986
$[H(H_2O)_2]_2 \{ [Tc_8(\mu-Br)_8Br_4]Br_2 \}$	2.152/9/, 2.520/9/ 2.69(1)	2.52/1/	2.52/1/	2.90/2/	Koz'min et al. 1982 Spitzin et al. 1988
[Tc ₈ (μ-Br) ₈ Br ₄]Br·2H ₂ O	2.146(2), 2.521(2) 2.69/2/	2.509/8/	2.50/2/	3.00/7/	Kryuchkov, et al. 1986

W. Kerlin, F. Poineau, P. Forster, K. R. Czerwinski, A. P. Sattelberger, *Inorg. Chimi, Acta*, 2014.
M. S. Grigoriev, S. V. Kryuchkov, *Radiochim. Acta* 1993, 63, 187.
P. A. Koz'min, M. D. Surazhskaya, T. B. Larina, *Dokl. Phys. Chem.* 1982, 265, 656.

ki, A. P. Sattelberger, Inorg. Chimi, Acta, 2014.
 S. V. Kryuchkov, A. F. Kuzina, V. I. Spitsyn, Dokl. Chem. 1986, 287, 1400.
 V. I. Spitzin, S. V. Kryuchkov, M. S. Grigoriev, A. F. Kuzina, Z. Anorg. Allg. Chem. 1988, 563, 136.
 S. V. Kryuchkov, M. S. Grigoriev, A. F. Kuzina, B. F. Gulev, V. I. Spitsyn, Dokl. Chem. 1986, 288, 172.

293

* Kryuchkov, Koz'min. Doklady Akademii Nauk, 1982, 266, p.127

Penta-nuclear Clusters

	M-M	Tc-X _{term}	Tc-X _{Bri}	Reference
(Tc ₅ I ₈)I ₅	2.6470 – 2.6662(8)	2.7268 – 2.7670(8)	2.6851 – 2.7571(8)	This Work
[Mo ₅ Cl ₈)Cl ₅] ²⁻	2.602 – 2.563(3)	2.418 – 2.440	2.434 – 2.473	Jödden et al. 1975
[(W ₅ I ₈)I ₅] ⁻	2.673 – 2.692 (1)	2.763 – 2.843 (2)	2.741 – 2.788(2)	Franolic et al. 1995
$\{[Tc_6(\mu-I)_6I_6]I_2\}^{3-1}$	2.18(1), 2.67(1)	2.71(1)	2.61/2/	Grigoriev et al. 1993
K[Tc ₈ (μ-I) ₈ I ₄]Ι	2.164/3/,2.5308(8), 2.72/3/	2.731/12/	2.68/3/	This Work Kerlin, et al. 2014

K. Jödden, H. Schnering, H. Schäfer. Angew. Chem., Int. Ed. Engl. 1975, 14, 570.
 J. Franolic, J. Long, R. Holm. J. Am. Chem. Soc. 1995, 117, 8139-8153.

M. S. Grigoriev, S. V. Kryuchkov, Radiochim. Acta 1993, 63, 187.
 W. Kerlin, F. Poineau, P. Forster, K. R. Czerwinski, A. P. Sattelberger, Inorg. Chimi, Acta, 2014.

M. Ströbele and H.-Jürgen Meyer Z. Anorg. Allg. Chem. 2010, 62–66

Conclusions

- New one-step synthesis route to Tc dimer species
 - In-situ hydrogen production from sodium borohydride
- Synthesize three new Tc-I species
 - $Tc_2(\mu O_2CCH_3)_4I$
 - $K[Tc_8(\mu-I)_8I_4]I$
 - $-\operatorname{Tc}_5(\mu\text{-I})_8I_5$
- Controlled hydrothermal reduction of KTcO₄ in acetic acid/MI (M = Na, K, H) for preferred product

Future Studies

- Uv-Vis spectrum of $Tc_2(\mu$ -O₂CCH₃)₄X core
 - Low temperature KBr pellet to observe δ δ^* transition or other methods
- Computational Calculations
 - Magnetic Susceptibility
- What about?
 - $Tc_2(\mu O_2CCH_3)_4F_2$
 - $Tc_2(\mu O_2CCH_3)_4I_2$

Acknowledgements

- Ken Czerwinski, Paul Forster, Al Sattelberger, Frederic Poineau, Christos Malliakas
- UNLV Radiochemistry Group:
 - Trevor Low, Julie Bertoia
- SISGR-Fundamental Chemistry of Technetium-99 Incorporated into Metal Oxide, Phosphate and Sulfide: Toward Stabilization of Low-Valent Technetium Contract No. 47824B Basic Energy Sciences, DOE

Thank you for your attention Questions

References

- A. P. Sattelberger, in Multiple Bonds between Metal Atoms, Chapter 7, 3rd Ed., F. A. Cotton, C. A. Murillo, R. A. Walton (Eds), Springer, New York **2005**
- Handbook of Hydrothermal Technology, K. Byrappa, M. Yoshimura, Noyes Publications, 2001 p. 92, 107.
- P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1982, 8, 851
- P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1981, 7, 1719.
- P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1983, 9, 1114.
- W.M. Kerlin, F. Poineua, P. Forster, K. R. Czerwinski, A. P. Sattelberger, Polyhedron, 2013, 58, 115
- V.I. Spitsyn, B. Baierl, S. Kryuchkov, A. Kuzina, and M. Varen, Dokl. Akad. Nauk. 1981, 256, 608
- F. Taha and G. Wilkinson. J. Chem. Soc. 5406 (1963
- S. V. Kryutchkov, Top. Curr. Chem., 1996, 176, 189.
- Frisch, M.; C.L. Cahill, J. Solid State Chem. 180 (2007) 2597-2602.
- Nelson, A.D.; T. Bray, Inorg. Chem. 2008, 47, 4945-4951.
- Bray, T.; J. Ling. Inorg. Chem. 2007, 46, 3663-3668.
- Belal, N.; M. Frisch. Inorg. Chem. 2008, 47, 10135-10140.
- Karimova, O.V.; P.C. Burns. Inorg. Chem. 2007, 46, 10108-10113.

Synthesis: $M[Tc_2(\mu-O_2CCH_3)_4X_2]$

M = K, Cs X = Br, I

$\mathsf{KTcO}_4 + \mathsf{CsI} + \mathsf{HC}_2\mathsf{H}_3\mathsf{O}_2 + \mathsf{NaBH}_4 \rightarrow \mathsf{Cs}[\mathsf{Tc}_2(\mu - \mathsf{O}_2\mathsf{CCH}_3)_4\mathsf{I}_2]$

Conditions

- 4:1 ratio Csl: TcO₄-
- 200 $^{\rm o}{\rm C}$ for 72 hrs

K[Tc₂(µ-O₂CCH₃)₄Cl₂] Spitsyn., et. al., 1980 Kozmin P. A., et. al., 1982

Synthesis from $K_3Tc_2Cl_8$

	Comparing	dihalide	alkali s	salt Tc_2^{+5}	core,	Bond	Order	3.5
--	-----------	----------	----------	------------------	-------	------	-------	-----

	Tc-Tc (Å)	Tc-O(eq)(Å)	Tc-L(ax) (Å)	Reference
$^{\dagger}K[Tc_{2}(\mu-O_{2}CCH_{3})_{4}Cl_{2}]$ Chloro anion	2.126 (5)	2.071 (3)	2.589 (1)	Kozmin et. al. 1982
$K[Tc_2(\mu-O_2CCH_3)_4Br_2]$ Bromo anion	2.1274 (3)	2.064 (13)	2.7467 (2)	This work
$Cs[Tc_2(\mu-O_2CCH_3)_4Br_2]$ Bromo anion	2.1298 (3)	2.065 (13)	2.7453 (3)	This Work
$Cs[Tc_2(\mu-O_2CCH_3)_4I_2]$ Iodo anion	2.1275 (3)	2.065 (13)	2.9813 (3)	This work
${}^{\ddagger}Tc_{2}(\mu\text{-}O_{2}CCH_{3})_{4}Cl_{2} \\ Tc_{2}(\mu\text{-}O_{2}CCH_{3})_{4}Br_{2}$	2.1758 (3) 2.1763 (3)	2.0211 (12) 2.0223 (14)	2.5078 (4) 2.6555 (3)	Kerlin et. al. 2013 This work

[†]P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. **1982**, 8, 851.

• Fluoride not present in sample

†V.I. Spitsyn, B. Baierl, S.V. Kryuchkov, A.F. Kuzina, and M. Varen, *Dokl. Akad. Nauk.* 1981, 256, 608 ‡F. Taha and G. Wilkinson. J. Chem. Soc. 5406 (1963)

Single Crystal – XRD Polymeric Chains

- Tc₂(μ-O₂CCH₃)₄-η-O₂CCH₃
 Monoclinic Cc
- $Tc_2(\mu-O_2CCH_2CH_3)_4-\eta-O_2CCH_2CH_3$ - Orthorhombic P2₁2₁2₁
- $Tc_2(\mu-O_2CC_6H_5)_4-\eta-O_2CC_6H_5$ - Triclinic P-1
- $\dagger \text{Tc}_2(\mu-\text{O}_2\text{CCH}_3)_4-\eta-\text{Cl}$ - Monoclinic C2/c Tc-Cl-Tc : 120°C
- $\ddagger Tc_2(\mu O_2CCH_3)_4 \eta Br$ - Monoclinic C2/m Tc-Br-Tc : 180°C
- Tc₂(μ-O₂CCH₃)₄-η-I

 Monoclinic C2/m
 Tc-I-Tc: 180°C

*P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1981, 7, 1719.
 * P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1983, 9, 1114.

Comparing dihalide alkali salt Tc₂⁺⁵ core, Bond Order 3.5

	Tc-Tc (Å)	Tc-O(eq)(Å)	Tc-L(ax) (Å)	Reference
$^{\dagger}K[Tc_{2}(\mu-O_{2}CCH_{3})_{4}Cl_{2}]$ Chloro anion	2.126 (5)	2.071 (3)	2.589 (1)	Kozmin et. al. 1982
$K[Tc_2(\mu-O_2CCH_3)_4Br_2]$ Bromo anion	2.1274 (3)	2.064 (13)	2.7467 (2)	This work
$Cs[Tc_2(\mu-O_2CCH_3)_4Br_2]$ Bromo anion	2.1298 (3)	2.065 (13)	2.7453 (3)	This Work
$Cs[Tc_2(\mu-O_2CCH_3)_4I_2]$ Iodo anion	2.1275 (3)	2.065 (13)	2.9813 (3)	This work
${}^{\ddagger}Tc_{2}(\mu\text{-}O_{2}CCH_{3})_{4}Cl_{2}$ $Tc_{2}(\mu\text{-}O_{2}CCH_{3})_{4}Br_{2}$	2.1758 (3) 2.1763 (3)	2.0211 (12) 2.0223 (14)	2.5078 (4) 2.6555 (3)	Kerlin et. al. 2013 This work

[†]P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. **1982**, 8, 851.

‡ P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1981, 7, 1719. ‡ P.A Koz'man, T.B. Larina, and M.D. Suraazhskaya, Koord. Khim. 1983, 9, 1114.
‡ W.M. Kerlin, F. Poineua, P. Forster, K. R. Czerwinski, A. P. Sattelberger, Polyhedron, 2013, 58, 115.

In-Situ Study Of Minor And Major Phase Formation And Transformation In Tc Bearing Mineral Analogues with Carbonate Starting Components.

We have recently embarked on studies of the structure and magnetic properties of technetium oxides including SrTcO₃, CaTcO₃, PbTcO₃ and Co₂TcO₄ the majority of which were first reported by Muller et al in 1964. Our typical method of synthesis involves calcination of $NH_4[TcO_4]$ with the associated nitrates in an argon atmosphere at 700°C and then subsequent sintering at 1000°C. Recently in a discussion with collaboratorswe were told that they had produced Sr_2TcO_4 which is an analogue of the superconductor Sr_2RuO_4 at 500°C, a temperature well below the normal calcination temperature for these materials. The implications of this could be quite significant for the nuclear industry in the formation of Tcbearing materials. Un-separated nuclear waste when stored can reach temperatures of several hundred degrees due to radiogenic heating. This implies that minor phases could be formed in the presence of other fission products if Tc is freely available in waste-forms or if precursor materials are left to for a period before calcination More importantly, it is also a possible pathway to novel Tc compounds produced at lower temperatures. We will report on the formation of various Tc mineral analogues starting from TcO₂ and carbonates and examine their stability at temperatures up to 1000 °C via Synchrotron XRD. The powder diffraction beamline at the Australian Synchrotron provides ample incident beam fluxthat allows us to use very small amounts of sample and so reduce the amount of radiation being dealt with to more than manageable levels. Additionally this strategy allows us to heat the sample in a sealed quartz capillary and also minimise the amount of waste that would be produced by heating several Tc containing compounds (each of which would weigh at least a gram each) to various temperatures and then examining them via laboratory XRD. Anotheradvantageof Synchrotron XRD is that it enables us to determine the technetium and A-cation positions accurately which will then enable us to calculate the oxygen distances. The Tc to O distances are important due to the fact that Tc is tetrahedrally coordinated in some of these materials which is then related to the magnetic and other properties.

Australian Government Gansto

In-Situ Study Of Minor And Major Phase Formation And Transformation In Tc Bearing Mineral Analogues

Gordon Thorogood, Brendan Kennedy, Emily Reynolds, Massey De Los Reyes and Helen Brand

First What is ANSTO

- Australian Nuclear Science and Technology Organisation.
- Started as the Australian Atomic Energy Commission (AAEC), in 1952, Lucas Heights site in 1958.
- Had two reactors HIFAR and MOATA.
- We almost built a nuclear power plant but it was abandoned due to cost in 1971.
- OPAL opened in 2007.
- Over 1000 employees, 40km SW of Sydney, 70 hectare campus.

First What is ANSTO

- One of our main activities is medical radioisotopes.
- 10,000 doses of nuclear medicine to 224 hospitals and clinics in Australia, per week.

Background of these Tc compounds

- Studies on the technetium oxides SrTcO₃, CaTcO₃, PbTcO₃ and Co₂TcO₄ first reported by Muller et al in 1964.
- We've recently become interested in the properties of these materials.

Compound Synthesis

- Our current standard method involves calcination of NH₄[TcO₄] with nitrates in an argon atmosphere at 700° C and then sintering at 1000° C.
- We want to avoid temperatures above 1250° C due to Tc oxidising to 7+.
- What lead to this line of investigation was we have been trying to make CdTcO₃ via oxides as UNLV group without success (enough for neutron diffraction that is).

Our challenges

Some insight is required

- At the Atalante 2012 conference Thomas Hartman reported that Sr₂TcO₄ which is an analogue of the superconductor Sr₂RuO₄ forms at 500° C.
- It's well below the normal calcination temperature for these materials.
- The implications of this could be quite significant. Is this phase A₂TcO₄ occurring in a lot of materials.

As per Wikipedia: An Ellingham diagram is a graph showing the temperature dependence of the stability for compounds. This analysis is usually used to evaluate the ease of reduction of metal oxides and sulphides. The Ellingham diagram plots the Gibbs free energy, reaction as a function of temperature

Something Might be Wrong With Our Furnace

- Ellingham diagram tells us we can make CdTcO₃ via oxides but we can't.
- So we either have a higher partial pressure of oxygen in our Argon or our thermocouple is reading incorrectly in the furnace.
- Solution in-situ XRD to see at what temp certain phases form.
- Problem it's Tc. Place it in sealed quartz capillaries and do the expt at the Synchrotron.
- Lets start with something simple.

Australian Synchrotron Setup

Australian Synchrotron Setup

Australian Synchrotron Setup

CaCO₃ (Calcite) 25° C, Decomp check

CaCO₃900° C

CaO 25° C cooled

Role of partial pressure of CO₂

TABLE 2. DTA PEAK TEMPERATURES OF DOLOMITE, MAGNESITE, AND CALCITE OBTAINED AT VARIOUS CO₂ PRESSURES

CO₂ pressure mm.	D Th Cat Mg CO peak	olomite, ornwood 0:30.8% 0:21.8% 2:46.1% temperat °C.	o; o; ures	M S. J M C loss peak	Aagnesite Rhodesi Big Dyke gO:46.74 aO:0.79 ign. 51. tempera °C.	e, a, %; %; 4% tures	Ca cle Cher peak	alcite, cle avage fra okee Cou Kansas, tempera °C.	ear ag. Inty, tures
	begin ning	maxi- mum	end	begin- ning	maxi- mum	end	begin- ning	maxi- mum	end
1	645	795	855	595	705	775	645	(820)	890
20	700	825	885	585	685	750	690	(860)	925
50	715	825	875	600	695	775	725	865	925
100	1. 735 2. (815)	790 860	(815) 910	575	725	800	755	895	940
300	1. 735 2. (835)	795 895	(835) 935	600	740	815	815	955	1025
660	1. 730 2. 885	790 950	835 975	600	745	815	870	995	
760	1. 755 2. 900	810 975	950 1000	595	765	825	895	1015	1055
Air	1. 775 2. (870)	825 945	(870) 995	(545)	765	(835)	(725)	985	1045

Robert. A. W. Haul et.al 1951

So How About Those Pesky A₂TcO₄'s?

- We decided to go with what we know.
- As we have experience of SrTcO₃ we thought try Sr₂TcO₄, seeing Thomas had made it.
- Next a little further from what we know, we have experience with CaTcO₃ so Ca₂TcO₄.

Sr₂TcO₄ after heating ???

One Step Up Ca₂TcO₄

Zoom in a Little, Ca₂TcO₄

A Closer Look Again, Ca₂TcO₄

Lets Go Further Sr_{0.9}Ba_{0.1}TcO₃

$Sr_xBa_{1-x}TcO_3$ ($Sr_{0.9}Ba_{0.1}TcO_3$)

$Sr_xBa_{1-x}TcO_3$ ($Sr_{0.9}Ba_{0.1}TcO_3$)

Conclusions / Further Work

Gordon Thorogood announcing Sydney, Australia as the site for the next ISTR2017

Spectroscopic and Photophysical Properties of Tetracyanidonitridorhenium(V) and –technetium(V) Complexes

Takashi Yoshimura,¹Hayato Ikeda,²Akitaka Ito,³Eri Sakuda,³ Noboru Kitamura,³ Tsutomu Takayama,⁴ Tsutomu Sekine,⁵and Atsushi Shinohara²

¹Radioisotope Research Center, Osaka University, Suita, Japan, ²Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan, ³Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan, ⁴Department of Chemistry, Daido University, Nagoya, Japan, ⁵Center for Advancement of Higher Education, Tohoku University, Sendai, Japan

Among the Group 7 metal ions, a very small number of technetium complexes have been reported to show photoluminescence. In coordination compounds, molecular sensing can be done based on the color change of a complex through changes in the coordination environments and/or direct interaction of the metal ion with a molecule to be sensed. In contrast, molecular sensing based on the vapochromic luminescence through a ligand substitution reaction and the coordination number of a metal ion in the solid state has been rarely reported. We report photoluminescent properties of novel six-coordinate nitridoRe(V) and Tc(V) complexes and their five-coordinate square pyramidal complexes without an axial ligand.

All of the five-coordinate square pyramidal and six-coordinate distorted octahedral complexes showed photoluminescence in the solid state at room temperature. The emission spectra and photophysical data of the five-coordinate $[ReN(CN)_4]^{2-}$ were significantly different from those of the relevant six-coordinate complexes. The present study demonstrated for the first time that the nitridoTc(V) complex showed luminescence in the solid phase at room temperature. Vapochromic luminescence between the bi-stable five- and six-coordinate Re complexes with the VOCs (MeOH, EtOH, acetone, or MeCN) and between the six-coordinate complexes was investigated. We found unique reversible coordination and elimination of a VOC at the axial site of the Re complex in the solid state that gave rise to changes in the emission maximum wavelength, demonstrating photoluminescence switching and sensing of VOC by the present Re(V) complexes at room temperature. Upon exposure of MeOH vapor to the five-coordinate Tc complex, the emission spectrum changed to that of the MeOH coordinate complex. The coordinating MeOH molecule can be removed by vacuum. The emission band shapes of the five-coordinate Tc complex remained unchanged even upon exposure of acetone vapor. The emission spectrum of MeOH coordinate Tc complex changed to that of the five-coordinate complex by exposure to acetone vapor. This suggests that the coordinating MeOH molecule in the Tc complex was eliminated under acetone vapor atmosphere, but acetone was not incorporated and did not coordinate at the axial site in the Tc complex.

[1] H. Ikeda, T. Yoshimura, A. Ito, E. Sakuda, N. Kitamura, T. Takayama, T. Sekine, A. Shinohara, *Inorg. Chem.***2012**, *51*, 12065.

[2] H. Ikeda, A. Ito, E. Sakuda, N. Kitamura, T. Takayama, T. Sekine, A. Shinohara, T. Yoshimura, *Inorg. Chem.***2013**, *52*, 6319.

Spectroscopic and Photophysical Properties of Tetracyanidonitridorhenium(V) and -technetium(V) Complexes

Takashi Yoshimura, Hayato Ikeda, Akitaka Ito, Eri Sakuda, Noboru Kitamura, Tsutomu Takayama, Tsutomu Sekine, Atsushi Shinohara

Osaka Univ., Hokkaido Univ., Daido Univ., Tohoku Univ.

Contents

- Synthesis, spectroscopic, and photophysical properties of tetracyanidonitridorhenium(V) and –technetium(V) complexes [MN(CN)₄L]²⁻ (M = Re, Tc; L = MeOH, EtOH, acetone MeCN, pyridine) [MN(CN)₄]²⁻
- Vapochromic luminescence between five- and six-coordinate complexes and between six-coordinate complexes
- Control of the photoemissive excited state characteristic by the N-heteroaromatic ligand

Photoluminescent technetium complexes

d² nitridometal complex

 $d_{x^{2}-y^{2}} \text{ or } d_{z^{2}} \qquad -- d_{z^{2}} \text{ or } d_{x^{2}-y^{2}} \qquad --- d_{xz_{z}} d_{yz} \qquad ---- \text{ LUMO}$

+

HOMO

Photoluminescence of nitridorhenium(V) complexes

Emission maximum wavelength (λ_{em})480 ~ 800 nmEmission lifetime (τ_{em})0.05 ~ 20 µsEmission quantum yield (Φ_{em})10⁻⁵ ~ 0.06 (in solution, 298 K)

The origin of the photoluminescence Excited ${}^{3}[d_{xy}{}^{1},(d_{xz}d_{yz})^{1}]$ with contribution of nitrido ligand $\rightarrow {}^{3}[d_{xy}{}^{1},(d_{xz}d_{yz})^{1}]$

V. W.-W. Yam, et al. J. C. S. Dalton Trans., 1125 (1996)

 d_{xv}

Present study

Vapochromic luminescence by change in the coordination number between five- and six-coordinate in the solid state

Contents

- Synthesis of Tc(V) and Re(V) complexes
- Photoluminescent properties
- Change in the coordination number by the solid state reaction
- ·Ligand substitution reaction in the solid state

Present study

Vapochromic luminescence by ligand substitution reaction between six-coordinate complexes in the solid state

Contents

- Synthesis of Tc(V) and Re(V) complexes
- Photoluminescent properties
- Change in the coordination number by the solid state reaction
- ·Ligand substitution reaction in the solid state

Synthesis of the Re(V) and Tc(V) complexes

	Re(V)	Tc(V)	
Six-coordinate	[ReN(CN) ₄ (MeOH)] ²⁻	[TcN(CN) ₄ (MeOH)] ²⁻	
	[ReN(CN) ₄ (EtOH)] ²⁻	[TcN(CN) ₄ (pyridine)] ²⁻	
	[ReN(CN) ₄ (acetone)] ²⁻		
	[ReN(CN) ₄ (MeCN)] ²⁻		
	[ReN(CN) ₄ (pyridine)] ²⁻		
Five-coordinate	[ReN(CN) ₄] ²⁻	[TcN(CN) ₄] ²⁻	

Photoluminescence of six-coordinate Re(V) in the solid state

Photoluminescence of five-coordinate Re(V) in the solid state

333

DFT calculations of six- and five-coordinate Re(V) complexes

Photoluminescence of six-coordinate Tc(V) in the solid state

Emission spectrum of five-coordinate technetium complex (296 K)

The five-coordinate complex

The excited state character is different from that of the six-coordinate complex

Vapochromic luminescece by change in coordination number between five- and six-coordinate rhenium complexes in the solid state

Emission spectral change by exposure time of acetone vapor to $[ReN(CN)_4]^{2-}$ in the solid state.

Plot of the molar ratio of acetone with the Re complex against exposure time of acetone vapor

Ligand substitution between six-coordinate Re(V) complexes in the solid state

Emission spectral change by exposure time of MeOH vapor to $[ReN(CN)_4(acetone)]^{2-}$ in the solid state.

Emission spectral change by exposure time of acetone vapor to $[ReN(CN)_4(MeOH)]^{2-}$ in the solid state.

Vapochromic luminescence of Re(V) complexes

Vapochromic luminescence of Tc(V) complexes

Vapochromic luminescence of Tc(V) complexes

Summary2

Reversible photoluminescence switching between six- and five-coordinate complexes between six-coordinate complexes in the solid state

H. Ikeda, T. Yoshimura, et al. Inorg. Chem. 2012, 51, 12065

Control of the photoemissive excited state characteristic by the N-heteroaromatic ligand

Synthesis of the complexes

X-ray structures (Re complexes)

Emission spectra in the solid state

L	$\lambda_{ m em}/ m nm$	$arPsi_{ m em}$	$ au_{ m em}$ /µs (%)
dmap	539	0.79	36(70), 10 (30)
lut	544	0.39	26
pic	544	0.79	44
рру	545	0.71	40
ру	539	0.93	45

ру

2-

....CN

NC///

NC

L	$\lambda_{ m em}/ m nm$	τ _{em} /μs	
dmap	535	75	
lut	540	111 142 106	
pic	547		
рру	551		
ру	539	100	

Emission spectra in the solid state

L	$\lambda_{ m em}/ m nm$	${\it P}_{ m em}$	τ _{em} /μs (%)
3bzpy	564	0.36	13.3
bpy	578	0.18	9.7 (59), 2.5 (41)
pz	623	0.05	2.7 (19), 0.80 (81)
сру	649	0.01	0.65 (26), 0.12 (74)
4bzpy	669	< 0.01	0.20 (5), 0.03 (95)

L	$\lambda_{ m em}/ m nm$	τ _{em} /ms
3bzpy	555	64
bpy	572	68 (62), 31 (38)
pz	597	53 (77), 25 (23)
сру	616	5.0 (3), 1.2 (97)
4bzpy	612	4.2 (12), 0.95 (88)

Summary 3

Yoshimura, et al., Inorg. Chem. 2013, 52, 6319

Educational Opportunities Within the UNLV Radiochemistry PhD Program

Wendee Johns, Program Manager

The Radiochemistry Ph.D. program at UNLV was founded as a joint program by the Department of Chemistry and the Health Physics Department in 2004. It is a student-driven, research intensive program that stresses the fundamental aspects of radiochemistry science. Its curriculum consists of a series of core courses that are complemented by elective classes offered by several different colleges, making it a truly interdisciplinary program. The program offersvarious research opportunities to undergraduate and graduate students, providing them with unique training and educational opportunities. In particular, it allows students to gain hands-on experience in handling, manipulating and detecting unsealed radioactive material early in their career. UNLV has the resources and capabilities to perform novel experiments that aid in exploring, understanding and utilizing the fundamental properties of radioisotopes. Given Nevada's unique relationship with nuclear activities, UNLV has emerged as a premier location for studying the chemistry of the actinides, technetium and other radionuclides.

The curriculum and research provide a comprehensive and interdisciplinary examination of topics and experiences necessary to produce graduates who are ready to secure employment and participate in radiochemistry research. The program has over 1500 square feet of radiochemistry laboratories capable of handling a range of activities. These facilities contain a host of experimental equipment for use in research including radionuclide counting facilities, spectroscopy, microscopy and x-ray diffraction. Student opportunities in research and education are expanded through interactions with national and international collaborators. The program focuses on student development in the areas of technical competency, communication skills, analytical and critical thinking skills and expertise in the field of radiochemistry. The student experience at UNLV's Radiochemistry program is further enhanced by collaboration with the Department of Energy sponsored Radiochemistry Fuel Cycle Summer School. This program, hosted by UNLV since 2010, provides UNLV PhD students with the unique experience of mentoring undergraduate students in radiochemistry research that is relevant to their thesis pursuits. Department of Energy researchers and staff scientists from national laboratories hold seminars and lecture series as part of the program which further expands education opportunities for UNLV students.A Ph.D. degree from UNLV in the field of radiochemistry, provides a wide variety of career opportunities performing forefront research in areas as diverse as radiochemistry, nuclear chemistry, materials research, renewable energy studies, nuclear forensics, and environmental studies to name a few.

ISTR 2014 La Baule – Pornichet, France 29th sept. – 3rd oct. 2014

Educational opportunities within the UNLV RADIOCHEMISTRY PHD PROGRAM

Wendee Johns, Program Manager

wendee.johns@unlv.edu

INTERDISCIPLINARY PROGRAM

O DEPARTMENT OF CHEMISTRY

- KENNETH CZERWINSKI, PHD
- FREDERIC POINEAU, PHD
- DAVID HATCHETT, PHD
- PAUL FORSTER, PHD

O DEPARTMENT OF HEALTH PHYSICS

- RALF SUDOWE, PHD
- GARY CEREFICE, PHD

O DEPARTMENT OF ENGINEERING

• THOMAS HARTMANN, PHD

RESEARCH TEAM

• FACULTY

• Chemistry, Health Physics, Engineering

o ASSOCIATE FACULTY/RESEARCH FACULTY

• Physics, Mechanical Engineering

o 26 GRADUATE STUDENTS

- 18 grant funded students
- 5 on fellowship at UNLV
- 3 on Fellowship at National Labs

• 2 LABORATORY MANAGEMENT PERSONNEL

- Technical Quality Assurance Manager
- Laboratory Manager

Radioanalytical Separations

Front Row: Lucas Boron-Brenner, Ralf Sudowe, Julia Nell, Audrey Roman Back Row: Rebecca Springs, Derek McLain, Jaimie Daum, Sherry Faye, Jeff Rolfes

UNIV

Actinide-Lanthanide Subgroup

Front Row: Dan Koury, Jacquelyn Dorhout Second Row: Ken Czerwinski, Saadi Nazal, Eunja Kim, Keri Campbell Back Row: AJ Swift, Daniel Rego, Marc Fitzgerald, Nicholas Wozniak

Technetium Subgroup

Front Row: Bradley Childs, Ken Czerwinski, Thomas Hartmann, Kyle Childs, Romina Farmand

Back Row: William Kerlin, Erik Johnstone, Frederic Poineau, Vanessa Sanders, Maryline Ferrier

RADCHEM PHD PROGRAM: Focus on Student Development

- Provide Students with Interesting and Important Research
- Analytical and Critical Thinking Skills
- Academic Driven Research Direction
- Strong Collaborations
- Noted Researchers
- Technical Competency
- Communication Skills
- Expertise in the field of Radiochemistry

Pathway to the PhD

- Required Coursework
 - 4 core courses
 - Introduction to Radiochemistry
 - Applied Nuclear Physics
 - Radiation Detection
 - Radiation Physics and Instrumentation Laboratory
 - Maintain a B or better average
 - Additional 48 Credits of Instructor Approved Coursework
- Weekly Seminar
 - 20 minute Presentation to Peers / Instructors
 - Safety, Equipment, Labs

The Road Continues...

- Selection of Research Project
- Committee Selection
- 2 Part Oral Exam on Research and Outside Topic
- Advance to Candidacy
- Conduct Research for Thesis
- Form their thesis committee

...and Continues

Culminating in a Written Thesis and Oral Defense

UNIV

Interactions With Researchers Outside UNLV

- Research opportunities at DOE laboratories
 - Summer Internships at LANL, PNNL

• Conference Presentations

- ACS, ANS, ACA, UITI, Marc IX
- ISTR, Atalante, APSORC, CHE 8

• Fellowships

- 2 Livermore Scholars, 4 Nuclear Forensics Graduate Fellows, 2 NEUP-IUP Fellows
- Publications

COLLABORATORS US DEPT OF ENERGY

Argonne National Laboratory

• Tc coordination chemistry

o Los Alamos National Laboratory

- Actinide oxide aging for forensics
- Tc-U Separations
- Technetium waste forms
- Nuclear Forensics Summer School
 1st school at UNLV in summer 2010

UNIV

○ NSTec

- Nuclear Forensics
- Environmental Pu chemistry

COLLABORATORS US DEPT OF ENERGY

Idaho National Laboratory

• Fuel cycle separations and nuclear fuels

Pacific Northwest National Laboratory

- Microscopy of tank waste solids and Tc waste forms
- NMR of Tc
- Actinide separations and spectroscopy

Lawrence Berkeley National Laboratory

• Characterization of Tc compounds

Livermore National Laboratory

- Nuclear forensics
- Heavy element chemistry

UNIVERSITY COLLABORATIONS

Nuclear Science and Security Consortium
 Coordinated by UC-Berkeley NE

• NSF-IGERT

• Hunter College, University of Missouri

UNIV

UNDERGRADUATE SUMMER SCHOOLS

○ FUEL CYCLE SUMMER SCHOOL

- Department of Energy Nuclear Energy
- 2010 2014
- 12 Students
- US Citizens Only

UNIV

NUCLEAR FORENSICS SUMMER SCHOOL

- US Dept of Homeland Security DNDO
- Regional Program
- Hosted by UNLV 2011 and 2014

STUDENT INTERNSHIPS

Typically 3-6 months depending on institution
 UNLV Assistance with Visa Application Process
 UNLV Assistance with Coordinating Housing

- ANSTO
- Chimie Paris Tech
- University of Nantes
- Universite de Savoie

WHAT DOES THIS MEAN FOR YOU?

- Opportunity for Student Interaction Through Internships
- Highly Motivated Students
- Need to Fulfill Internship
 Requirements for Degree
- Interested in Our Research

• Ability to Secure Funding Through Scholarships and Fellowships

Email to: Wendee.Johns@UNLV.edu

Thank You

Questions?

Rhenium Complexes of Benzothiazoles as Models for the Diagnosis of Alzheimer`s Disease

> T.I.A. Gerber*, X. Schoultz Nelson Mandela University South Africa

Alzheimer`s Disease

- AD major cause of dementia
- Neurodegenerative disorder leading to synaptic failure and neutronal death
- Pathological feature is presence of extracellular senile plaques in the brain
- Plaques consist of insoluble peptide called *amyloid-* (AB)
- Diagnostic imaging agents targeting *A*β important in diagnosis, treatment and monitoring of patients
- A
 β fibrils have a cross-β-sheet structure, held together by Hbonding, π-π stacking and electrostatic interactions
- Orientation of sheets generates small channels and pockets to which aromatic molecules can intercalate and bind via π - π .

 β -Strands running perpendicular to the fiber axis

International Year of Crystallography

Benzothiazoles (bt)

• Bt's show some selectivity to Aβ fibrils and plaques

 \bullet Rigid aromatic systems that enter channels or hydrophobic pockets and bind via $\pi\text{-}\pi$ interactions

• Prerequisites: - ability to cross the BBB

- small lipophilic agents/tracers
- excellent brain uptake
- fast washout from normal brain
- Pittsburgh Compound –B most well-characterized agent for Aβ plaques

J. Neuro Sci, 2007, 27, 10365.

Benzothiazole (X = S)

Alzheimer's disease

Antimicrobial

Benzimidazole (X = NH)

Anti-tumour

Chelator

Analogous Bidentate Ligands

	X	Y	R ¹	R ²	R ³
Pittsburgh Compound B	S	С	H	NHCH ₃	ОН
Hhpd	S	С	0	Н	Н
Habt	S	С	NH ₂	Н	Н
H ₂ pab	NH	С	NH ₂	Н	Н
bibzimH ₂	Ν	-	-	-	Н

Hy

[Re(CO)₅Br]

I. Booysen, T. I.A. Gerber, P. Mayer, Inorganic Chimica Acta, 2010, 363, 1292-1296.

Hhpd versus Habt

[ReOBr₃(PPh₃)₂]

Re-N = 2.180(7) Å Re-O(1) = 1.949(5) Å

Re-N(2)H = 1.952(2) Å Re-N(1) = 2.143(2) Å

Trans-dichloro

Re-O(2) = 1.691(3) Å Re-O(1) = 1.934(3) Å Cl(1)-Re-Cl(2) = 170.37(4)°
With *trans*-[$\text{ReO}_2(py)_4$]⁺ in Ethanol

• N(1)-Re-N(2) = 85.6(2)°

I. Booysen, T. I.A. Gerber, P. Mayer, Journal of Coordination Chemistry, 2008, 61, 1525 – 1531.

With [ReOCl₃(PPh₃)₂] in Ethanol

With [ReOBr₃(PPh₃)₂] in Methanol

With [ReOBr₃(PPh₃)₂] in Ethanol

- Re(III)
- Re-N(1) = 2.134(5) Å
- Re-N(2) = 2.148(4) Å

Re-N(1) = 2.089(2) Å Re-N(3) = 2.079(2) Å

Re(III) Re-N(1) = 2.149(9) Å Re-N(2) = 2.09(1) Å C(2)-N(2) = 1.42(2) Å C(3)-N(2) = 1.293(18) Å

Re(1)-N(11) = 2.211(2) Å Re(1)-S(12) = 2.512(1) Å C(1)-N(11) = 1.313(4) Å C(2)-N(12) = 1.276(3) Å

[Re₄(CO)₁₂(MeS)₄]

C(2)-C(2a) = 1.378(2) Å

Characterization

Re – O(1) = 1.712(2) Å Re – O(2) = 1.859(2) Å Re – O(2ⁱ) = 2.109(3) Å

$$O(1) - Re - O(2) = 170.2(1)^{\circ}$$

 $N(1) - Re - S(1) = 85.62(9)^{\circ}$
 $N(3) - Re - S(1) = 91.07(7)^{\circ}$

v(Re=O) = 942 cm⁻¹ v(Re-O-Re) = 694 cm⁻¹

Conductivity (CH₃CN, 10⁻³M): 256 ohm⁻¹cm²mol⁻¹

1:2 electrolyte

Rhenium complexes of benzothiazoles as models for the diagnosis of Alzheimer`s disease

T.I.A. Gerber and X. Schoultz

Department of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa

Rhenium complexes of benzothiazole derivatives may be of interest for the development of potential radiopharmaceuticals for radiotherapy and for the diagnosis of Alzheimer's disease. Benzothiazoles were found to be active against a range of breast carcinoma cell lines, and can provide information on amyloid deposits in AD patients.

Derivatives of 1,3-benzothiazoles have been synthesized and coordinated to rhenium. Bis-(benzothiazole) ligands containing the thioether bridge has been prepared and spectroscopically characterized. For example, bromopentacarbonylrhenium(I) reacted with bis(benzothiazol-2ylethyl)sulfide (bbt) to produce the *fac*-[Re(CO)₃(bbt)Br] complex. The ligand acts as a neutral bidentate chelate with one of the benzothiazole units remaining uncoordinated. The bis(benzothiazole) ligands has also been derivatized to include amino and hydroxyl groups which can potentially coordinate as tridentate chelating ligands to the metal centre. These novel rhenium-benzothiazole complexes may have significance in the development of technetium-99m analogues that could possibly be applied as a diagnostic tool for Alzheimer's disease.

This work was extended to include the corresponding benzoxazoles and benzimidazoles. These ligand systems have demonstrated interesting pharmacological activities and have recently been extensively studied for their anticancer activity. An *in vitro* biological evaluation of 2-substituted benzoxazoles showed that this class of ligands has anticancer/antineoplastic, anti-HIV-1 and antimicrobial activities. The broadening of the scope of the project to include novel rhenium-benzoxazole and benzimidazole complexes may lead to the development of a suitable radiopharmaceutical for the treatment of cancer. The synthesized complexes were fully characterized through the use of infra red and ¹H NMR spectroscopy, UV-Vis spectroscopy, conductivity measurements, cyclic voltammetry, X-ray structure determination and computational analysis.

Re – N(1) = 2.222(3) Å Re – S(1) = 2.4907(11) Å Re - CO = 1.896(5) - 1.960(5) ÅN(1) - Re - S(1) = 88.66(9)°

Spectroscopic Characterization

Synthesis

Crystal structure

Synthesis of complex

2,2'-(oxybis(methylene))bis(benzimidazole) (bmb)

Crystal structure

[Re(bmb)(CO)₃]⁺

[Re₂Cl₃(CO)₆]⁻

Acknowledgements

- NMMU
- National Research Foundation
- Ntembi Consortium
- Dr Peter Mayer
- Dr Eric Hosten
- You, for your interest, patience and time!

Addo National Park

Nitrosyltechnetium Complexes with Various P,N Ligands

Janine Ackermann^{1*}, Adelheid Hagenbach¹, Ulrich Abram¹ *Freie Universität Berlin - Germany* e-mail.: Janine.Ackermann@fu-berlin.de

The coordination chemistry of rhenium and particularly technetium nitrosyls can be regarded as widely unexplored. This is surprising with regard to the fact that rhenium compounds frequently possess remarkable catalytic properties and compounds of the metastable, gamma-emitting technetium nuclide ^{99m}Tc ($t_{1/2} = 6$ h) with the metal in low oxidation states found application in diagnostic nuclear medicine.

(NBu₄)[Tc(NO)Cl₄(MeOH)] is a suitable starting material for the syntheses of Tc^{II} and Tc^I nitrosyl complexes.¹ Reactions with (2-aminomethylphenyl)diphenylphosphine, H₂L1, give different products depending on the conditions applied. The products involve technetium(I) and technetium(II) complexes, which contain the phosphineamine in various coordination modes and positions. Reactions in methanol form products such as the technetium(I) complexes [Tc(NO)Cl₂(H₂L1- κ N,P)(H₂L1- κ N)] and [Tc(NO)Cl₂(H₂L1- κ N,P)₂]⁺ or the technetium(II) compounds [Tc(NO)Cl₃(H₂L1- κ N,P)] and [Tc(NO)Cl₄(H₂L1- κ N)]⁻ (see Fig. 1). The products could be isolated in crystalline form and studied by X-ray diffraction.

Fig. 1: Overview of the reactions with (NBu₄)[Tc(NO)Cl₄(MeOH)] with H₂L1 in methanol.

Reactions of (2-aminophenyl)diphenylphosphine, H₂L2, with (NBu₄)[Tc(NO)Cl₄(MeOH)] give the cationic technetium(I) chelate $[Tc(NO)Cl(H_2L2-\kappa N, P)_2]^+$ in two isomeric forms depending of the reaction conditions applied. Both products were studied spectroscopically and by single crystal X-ray crystallography.

^{1.} Cheah, C. T.; Newman, J. L.; Nowotnik, D. P.; Thornback, J.R.; Nucl. Med. Biol. 1987, 14, 573.

Nitrosyltechnetium Complexes with Various *P*,*N* Ligands

Janine Ackermann Institute of Chemistry and Biochemistry Freie Universität Berlin

8th International Symposium on Technetium and Rhenium

Technetium Nitrosyls

K. E. Linder, A. Davison, J. C. Dewan, C. E. Costello, S. Maleknia, *Inorg. Chem.* **1986**, *25*, 2085., [2] R. Schibli, N. Marti, P. Maurer, B. Spingler, M. L. Lehaire, V. Gramlich, C. L. Barnes, *Inorg. Chem.* **2005**, *44*, 683., [3] D. Rattat, A. Verbruggen, H. Schmalle, H. Berke, R. Alberto, *Tetrahedron Letters.* **2004**, *45*, 4089., [4] Orvig, C.; Davison, A.; Jones, A. G. J. Labelled Compd. Radiopharm. **1981**, *18*, 148., [5] T. Nicholson, P. Müller, A. Davison, A. G. Jones, *Inorg. Chim. Acta* **2006**, *359*, 1296., [6] R. M. Pearlstein, W. M. Davis, A. G. Jones, A. Davison, *Inorg. Chem.* **1989**, *28*, 3332.

Synthese of Technetium Nitrosyls

Nitrosyltechnetium Complexes with Various P,N Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

Freie Universität

Technetium Nitrosyls

[1] K. E. Linder, A. Davison, J. C. Dewan, C. E. Costello, S. Maleknia, *Inorg. Chem.* 1986, *25*, 2085., [2] R. Schibli, N. Marti, P. Maurer, B. Spingler, M. L. Lehaire, V. Gramlich, C. L. Barnes, *Inorg. Chem.* 2005, *44*, 683., [3] D. Rattat, A. Verbruggen, H. Schmalle, H. Berke, R. Alberto, *Tetrahedron Letters.* 2004, *45*, 4089., [4] Orvig, C.; Davison, A.; Jones, A. G. *J. Labelled Compd. Radiopharm.* 1981, *18*, 148., [5] T. Nicholson, P. Müller, A. Davison, A. G. Jones, *Inorg. Chim. Acta* 2006, *359*, 1296., [6] R. M. Pearlstein, W. M. Davis, A. G. Jones, A. Davison, *Inorg. Chim. Acta* 2006, *359*, 1296., [6] R. M. Pearlstein, W. M. Davis, A. G. Jones, A. Davison, *Inorg. Chem.* 1989, *28*, 3332., [7] C.T. Cheah, J.L. Newman, D.P. Nowotnik, J.R. Thornback, *Nucl. Med. Biol.* 1987, *14*, 573., [8] T. Nicholson, P. Müller, A. Davison, A. G. Jones, *Inorg. Chim. Acta* 2006, *359*, 1296. [9] C. S Gong, W. W. Lukens, F. Poineau, K. R. Czerwinski, *Inorg. Chem.* 2008, *47*, 6674.
Nitrosyltechnetium Complexes with Various *P*, *N* Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

Syntheses of Technetium Nitrosyls Freie Universität

· reduction of pertechnetate with hydroxylamine hydrochloride

• reduction of pertechnetate with acetohydroxamic acid

[9] C. S Gong, W. W. Lukens, F. Poineau, K. R. Czerwinski, *Inorg. Chem.* 2008, 47, 6674. [10] S. M. Balasekaran, J. Spandl, A. Hagenbach, K. Köhler, M. Drees, U. Abram, *Inorg. Chem.* 2014, 53, 5117. Nitrosyltechnetium Complexes with Various *P*,*N* Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

Berlin

N

Тс

С

0

P

[12] J. Ackermann, A. Hagenbach, U. Abram, Inorg. Chim. Acta 2014, 419, 59.

Nitrosyltechnetium Complexes with Various P,N Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

 NH_2

P, N – ligand systems

(NBu₄)[Tc(NO)Cl₄(MeOH)]

R = H_2L1 $H_{2}L2$

able to stabilize transition metals in high and low oxidation states

PPh₂

ligand systems with two donor center

Freie Universität

Berlin

EPR of (NBu₄)[Tc(NO)Cl₄(H₂L1-KN)] Freie Universität

[12] J. Ackermann, A. Hagenbach, U. Abram, Inorg. Chim. Acta 2014, 419, 59. Nitrosyltechnetium Complexes with Various P,N Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

[Tc(NO)Cl₃(H₂L1-κ*N*,*P*)]

Berlin

	Solvent	g∥	g⊥	A _∥ ^{Tc}	A_ ^{Tc}	A∥P
[Tc(NO)Cl ₄ (H ₂ L1-κN)] ⁻	DMF	2.021	2.091	234.9	99.6	28.3
$[Tc(NO)Cl_3(PPhMe_2)_2]^{[12]}$	CHCl₃	2.045	2.049	214.8	89.2	23.6

coupling constants are given in 10⁻⁴ cm⁻²

[12] J. Ackermann, A. Hagenbach, U. Abram, *Inorg. Chim. Acta* 2014, 419, 59. [13] R. Kirmse, B. Lorenz, K. Schmidt, *Polyhedron* 1983, 2, 935.
 Nitrosyltechnetium Complexes with Various *P*,*N* Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

[11] J. Ackermann, A. Hagenbach, U. Abram, Inorg. Chim. Acta 2014, 419, 59. Nitrosyltechnetium Complexes with Various P,N Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

$[Tc(NO)CI_2(H_2L1-\kappa N, P)(H_2L1-\kappa N)]$

[12] J. Ackermann, A. Hagenbach, U. Abram, *Inorg. Chim. Acta* 2014, *419*, 59.
 Nitrosyltechnetium Complexes with Various *P*,*N* Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

EPR of (NBu ₄)[Tc(NO)Cl ₄ (H ₂ L1-KN)] Freie Universität							
- experimental - simulation							
300 B/mT	400 X-b	and spe	200 ectra	300	B/mT	400	
room temperature				frozen solution (77 K)			
Compound	Solvent	g∥	g⊥	A _∥ ^{Tc}	$A_{\!\scriptscriptstyle \perp}{}^{\rm Tc}$	g ₀	a ₀ ^{Tc}
$[Tc(NO)Cl_4(H_2L1-kN)]^-$	CH_2CI_2	1.989	2.083	258.9	105.2	2.037	151.8
[Tc(NO)Cl ₅] ²⁻	CH_2CI_2	1.985	2.037	259.8	111.0	2.029	157.6
coupling constants are given in 1	10 ⁻⁴ cm ⁻¹						

[12]J. Ackermann, A. Hagenbach, U. Abram, *Inorg. Chim. Acta* **2014**, *419*, 59., [13] G. C. Yang, M. W. Heitzmann, L. A. Ford, W. R. Benson, *Inorg. Chem.* **1982**, *21*, 3242.

[Tc(NO)Cl (H₂L2-κ*N*,*P*)₂]

[Tc(NO)CI (H₂L2-κ*N*,*P*)₂]

[Tc(NO)CI (H₂L2-к*N*,*P*)₂]

Summary

- Syntheses of new Tc(I) and Tc(II) nitrosyl complexes with P, N ligands
 - starting material: (NH₄)[TcO₄], (NBu₄)[Tc(NO)Cl₄]
- different coordination modes depend on
 the conditions applied
 Ta(II) nitropul composition dependent on the conditions applied
 - Tc(II) nitrosyl compounds characterized by EPK
 - superhyperfine coupling with phosphorus

Technetium Nitrosyls

[1] K. E. Linder, A. Davison, J. C. Dewan, C. E. Costello, S. Maleknia, *Inorg. Chem.* 1986, *25*, 2085., [2] R. Schibli, N. Marti, P. Maurer, B. Spingler, M. L. Lehaire, V. Gramlich, C. L. Barnes, *Inorg. Chem.* 2005, *44*, 683., [3] D. Rattat, A. Verbruggen, H. Schmalle, H. Berke, R. Alberto, *Tetrahedron Letters.* 2004, *45*, 4089., [4] Orvig, C.; Davison, A.; Jones, A. G. *J. Labelled Compd. Radiopharm.* 1981, *18*, 148., [5] T. Nicholson, P. Müller, A. Davison, A. G. Jones, Inorg. Chim. Acta 2006, 359,1296., [6] R. M. Pearlstein, W. M. Davis, A. G. Jones, A. Davison, *Inorg. Chem.* 1989, *28*, 3332., [7] C.T. Cheah, J.L. Newman, D.P. Nowotnik, J.R. Thornback, Nucl. Med. Biol. 1987, *14*, 573., [8] T. Nicholson, P. Müller, A. Davison, A. G. Jones, *Inorg. Chim. Acta* 2006, *359*, 1296. [9] [9] C. S Gong, W. W. Lukens, F. Poineau, K. R. Czerwinski, *Inorg. Chem.* 2008, *47*, 6674.
Nitrosyltechnetium Complexes with Various *P*, *N* Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

[Tc(NO)Cl₄]⁻ in literature

D.S. Brown, J.L. Newman, J.R. Thornback, A. Davison, Acta Crystallogr., Sect. C **1987**, *43*, 1692.

Experimental. Preparation by the method of Cheah, Newman, Nowotnik & Thornback (1987); bright green crystals grown from methanol/diethyl ether; two forms of crystal, rectangular plate and needle; crystal $(0.63 \times 0.39 \times 0.13 \text{ mm})$ rectangular plate mounted about **a**: Stoe Weissenberg diffractometer, $(\sin\theta)/\lambda <$ C.T. Cheah, J.L. Newman, D.P. Nowotnik, J.R. Thornback, Nucl. Med. Biol. **1987**, *14*, 573.

Synthesis of [99mTc]Tc(NO)Cl₄

In a typical preparation for injection into laboratory animals, generator eluate (1 mL, ca 3 GBq) was heated with an equal volume of concentrated HCl (Fisons) for 30 min. After cooling the reaction was diluted with H₂O (1 mL) and 2.3 M hydroxyammonium chloride solution (1 mL) added. The reaction was then heated for a further 30 min. On cooling 0.1 mL of a 7% solution of (nBu), NCl in water was added followed by dichloromethane (4 mL). Essentially quantitative extraction of the technetium complex into the organic layer occurred after shaking for ca 10 min. The organic layer was separated and the solvent evaporated by blowing N2 through the solution. The residue was redissolved in a 10% ethanol/saline solution and was now in a suitable form for injection. The synthesis was repeated using [%Tc]TcO4 (1 mL, 18 MBq) with generator eluant (20 MBq) added and the final product analysed by standard chemical procedures and compared with the known data for Tc(NO)Cl₄.

What about the yellow compound? Freie Universität

[15] R. Kirnise, J. Stach, O. Abram, I. N. Marov, Z. Anorg. Ang. Chem. 1904, 516, 210. Nitrosyltechnetium Complexes with Various P,N Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

Ligand Exchange with HF

Nitrosyltechnetium Complexes with Various P,N Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

Ligand Exchange with HF

Linear Dependency

 ^[16] R. Kirmse, U. Abram, Z. Anorg. Allg. Chem. 1989, 573, 63.
 Nitrosyltechnetium Complexes with Various P,N Ligands - Janine Ackermann - Freie Universität Berlin - 01.10.2014

Thank you very much for your kind attention!

Fluorido Complexes of Low-valent Technetium

Samundeeswari Mariappan Balasekaran*, Adelheid Hagenbach, Ulrich Abram

Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr 34-36, Germany.

*email: eswari@zedat.fu-berlin.de

The coordination chemistry of technetium with fluorido ligands is by far less explored than that with other halides. Almost all hitherto published reports on technetium fluorides focus on the higher oxidation states of the metal,¹ while the coordination chemistry of low-valent technetium compounds is almost unknown. Here we report synthesis, spectroscopic and structural characterization as well as reactions of novel nitridotechnetium(VI), nitrosyltechnetium(I) and -(II) fluorides together with a reinvestigation of hexafluoridotechnetate(IV). Representative compounds are shown in Fig. 1.

The nitrido complexes were synthesized either from nitridotechnetic(VI) acid or from pertechnetate by using reducing agent and have been isolated as cesium or tetraethyl-ammonium salts. Various salts of hexafluoridotechnetate(IV) were prepared by a novel and improved synthesis and some of the critical issues of early publications such as the color, some spectroscopic properties, reactivity and structural features of this key compounds have been solved.²

Fig. 1: Molecular anions of (a) $[Tc^{VI}_2N_2O_2F_4]^{2-}$ (b) $[Tc^{IV}F_6]^{2-}$ (c) $[Tc^{II}(NO)F_5]^{2-}$ (d) $[Tc^{I}(NO)(NH_3)_4F]^{+}$

Following a new preparative route for nitrosyltechnetium complexes,³ pentafluoridonitrosyltechnetate(II) and *trans*-tetraamminefluoridonitrosyltechnetium(I) were prepared and characterized by spectroscopic and crystallographic methods.⁴ Ligand exchange reactions of the nitrosylfluoridotechnetium complexes were studied.

References:

- 1. See references 5 to 13 of ref. 2 of this abstract.
- 2. S. M. Balasekaran, M. Molski, L. Spandl, A. Hagenbach, R. Alberto, U. Abram, *Inorg. Chem.* 2013, 52, 7094.
- 3. C. -M. S. Gong, W. W. Lukens, F. Poineau, K. R. Czerwinski, Inorg. Chem. 2008, 47, 6674.
- 4. S. M. Balasekaran, J. Spandl, A. Hagenbach, K. Köhler, M. Drees, U. Abram, Inorg. Chem. 2014, 53, 5117.

Fluorido Complexes of Low-valent Technetium

Samundeeswari. M. Balasekaran Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin.

01-10-2014.

8th International Symposium on Technetium and Rhenium

Introduction

> Technetium fluorides in the oxidation state VII-V are known.

Oxidation states	Fluorides	Oxidofluorides
VII	-	TcOF ₅ , TcO ₂ F ₃ , TcO ₃ F
VI	TcF ₆	TcOF ₄
V	TcF ₅	-
IV	[TcF ₆] ²⁻	[F₅TcOTcF₅] ⁴⁻
Ш	-	-
II	-	-
l	-	-

Schwochau, K.; Herr, W. Angew. Chem. 1963, 75, 95; Angew. Chem. Int, Edit. 1963, 2, 97. (2) Schwochau, K. Z. Naturforsch. 1964, 19a, 1237.
 Jorgensen, C. K.; Schwochau, K. Z. Naturforsch. 1965, 20a, 65. (4) Krasser, W.; Schwochau, K. Z. Naturforsch. 1970, 25a, 206. (5) Alberto, R.; Anderegg, G. Polyhedron 1985, 6, 1067.

Alberto, R.; Anderegg, G. *Polyhedron* **1985**, 6, 1067. Mariappan Balasekaran, S.; Molski, M.; Spandl, J.; Hagenbach, A.; Alberto, R.; Abram, U. *Inorg.Chem.* **2013**, *52*, 7094.

8th International Symposium on Technetium and Rhenium

	(NH ₄) ₂ [TcF ₆]	Na ₂ [TcF ₆]	$K_2[TcF_6]$	Rb₂[TcF ₆]	Cs ₂ [TcF ₆]	(NMe ₄) ₂ [TcF ₆]
Tc–F / Å	1.922(6)	1.895(6)	1.928(1)	1.933(3)	1.935(5)	1.929(2)
F–Tc–F / °	87.7(2)	87.6(3)	86.93(5)	87.2(2)	87.8(2)	89.8(1)
	92.3(2)	92.4(3)	93.07(5)	92.8(2)	92.2(2)	90.2(1)
	180.0(4)	180.0(4)	180.0(1)	180.0(1)	180.0(1)	180.0(1)

Mariappan Balasekaran, S.; Molski, M.; Spandl, J.; Hagenbach, A.; Alberto, R.; Abram, U. Inorg. Chem. 2013, 52, 7094.

Structures of [TcF₆]²⁻

Freie Universität 🖉 🛁 🕥 Berlin

Freie Universität

Mariappan Balasekaran, S.; Molski, M.; Spandl, J.; Hagenbach, A.; Alberto, R.; Abram, U. *Inorg.Chem.* **2013**, *52*, 7094. 8th International Symposium on Technetium and Rhenium

Reactivity of [TcF₆]²⁻

 $[TcF_6]^{2-}$ is inert, did not react even with strong chelating ligands.

Mariappan Balasekaran, S.; Molski, M.; Spandl, J.; Hagenbach, A.; Alberto, R.; Abram, U. Inorg. Chem. 2013, 52, 7094.

8th International Symposium on Technetium and Rhenium

Berlin

Mariappan Balasekaran, S.; Molski, M.; Spandl, J.; Hagenbach, A.; Alberto, R.; Abram, U. *Inorg.Chem.* **2013**, *52*, 7094. 8th International Symposium on Technetium and Rhenium

Reactivity of [TcF₆]²⁻

Gong, C.-M. S.; Lukens, W. W.; Poineau, F.; Czerwinski, K. R. *Inorg. Chem.* **2008**, *47*, 6674. Mariappan Balasekaran, S.; Molski, M.; Hagenbach, A.; Abram, U. Z. *Anorg. Allg. Chem.* **2013**, 639, 672.

8th International Symposium on Technetium and Rhenium

Berlin

Freie Universität

Mariappan Balasekaran, S.; Molski, M.; Hagenbach, A.; Abram, U. Z. Anorg. Allg. Chem. 2013, 639, 672.

8th International Symposium on Technetium and Rhenium

Technetium Nitrosyl Chemistry

NH₄[TcO₄]	

 $\frac{HF_{(aq)}, reflux}{CH_3CONHOH}$ $\frac{F(M = Rb-Cs)}{F(F_6)}$

Mariappan Balasekaran, S.; Spandl, J.; Hagenbach, A.; Köhler, K.; Drees. M.; Abram, U. *Inorg.Chem.* **2014**, 53, 5117. 8th International Symposium on Technetium and Rhenium

Mariappan Balasekaran, S.; Spandl, J.; Hagenbach, A.; Köhler, K.; Drees. M.; Abram, U. *Inorg.Chem.* **2014**, 53, 5117. 8th International Symposium on Technetium and Rhenium

A_{II} = 271.2; A_⊥ = 112.4

8th International Symposium on Technetium and Rhenium

Mariappan Balasekaran, S.; Spandl, J.; Hagenbach, A.; Köhler, K.; Drees. M.; Abram, U. *Inorg.Chem.* **2014**, 53, 5117. 8th International Symposium on Technetium and Rhenium

^(a) Mariappan Balasekaran, S.; Spandl, J.; Hagenbach, A.; Köhler, K.; Drees, M.; Abram, U. *Inorg.Chem.* **2014**, 53, 5117.

^(b) Yang, G. C.; Heitzmann, M. W.; Ford, L. A.; Benson, W. R. *Inorg. Chem.* **1982**, *21*, 3242.

^(c) Kirmse, R.; Stach, J.; Lorenz, B.; Marov, I. N. Z. Chem. **1984**, *24*, 36.
^(d) Kirmse, R.; Stach, J.; Abram, U. Polyhedron. **1985**, *4*, 1275.

8th International Symposium on Technetium and Rhenium

8th International Symposium on Technetium and Rhenium

8th International Symposium on Technetium and Rhenium

- Fluorido Complexes of low-valent fluorido technetium complexes starting from Tc(IV), Tc(II) and Tc(I) compounds were synthesized.
- ✤ Tc(II) and Tc(I) compounds are stabilized with NO core.
- Low-valent Tc-F bonds are unexceptionally inert.
- Fluoride withdrawing agents facilitates ligand exchange reactions.

8th International Symposium on Technetium and Rhenium

Thank you for your attention.

Nitridofluoridotechnetate(VI)

⁽¹⁾ Baldas, J.; Boas, J. F.; Bonnyman, J. Aust. J. Chem. **1989**, 42, 639.

⁽²⁾ Baldas, J.; Boas, J. F.; Ivanov, Z.; James, B. D. *Transition Met. Chem.* **1997**, 22, 74.

Nitridofluoridotechnetate(VI)

Formation of nitrosyl-containing o-phenanthroline complex of iron in presence of TcO4- and HNO3.

Tatiana Boytsova, V.G.Khlopin Radium Institute

Previously, precipitation of technetium with o-phenanthroline complex of iron(II) (Ferroin nitrate) was suggested for technetium recovery from nitric acid solutions of the SNF reprocessing. This complex allows to precipitate $93\pm5\%$ Tc from the solutions with the concentration of nitric acid up to 2M.[1]

The study of formed sediments by elemental analysis revealed the formation of compounds with a variable composition, which depends on the precipitation conditions.[2]

When the physicochemical properties of these compounds were studied, the band in the range of 1700 cm^{-1} was detected along with the band at 900 cm^{-1} , belonging to pretechnetate-ion, the band at 1385 cm^{-1} of nitrate-ion and the band at $3200-3600 \text{ cm}^{-1}$ indicating the presence of crystallization water.

The IR spectrum with the band at 1700 cm^{-1} was compared with the IR spectra of Ferroin nitrate, KTcO₄, and TcO₂, which probably could be formed during the incomplete pretechnetateion reduction. It was found that the band at 1700 cm^{-1} is absent in the IR spectra of these compounds.Basing on the datagiven in [3] it was supposed that this band at 1700 cm^{-1} belongs to the coordinated NO group.

For comparison, the precipitates were prepared by the pertechnetate ion precipitation with Ferroinsulphate from the sulfuric acid solutions. The IR spectra of the precipitates formed under the above conditions also didn't containband at 1700 cm⁻¹.

It was found that under defined experimental conditions the presence of the mother solution in the course of dehydration is necessary to obtain the nitrosyl-containing complexes. The content of the mother solution was determined by elemental analysis and UV-VIS spectrophotometry. It was determined that along with nitric acid, pertechnetateion, oxidized o-phenanthroline complex of iron(III), this solution also contains the initial Ferroin nitrate.

Poorly soluble compounds of rhenium were prepared under the same experimental conditions by precipitation of perrhenateion from the solutions of nitric acid. The IR spectra of the resulting rhenium-containing complexes showed the absence of coordinated NO group. Hence, the nitrosylcontaining o-phenanthroline complexes of ironcan be formed only in the presence of pertechnetateion.

Additional data on the structure and composition of the nitrosyl-containing compounds obtained bypretechnetateion precipitation with Ferroin nitrate from the nitric acid solutions were obtained using single-crystal X-ray diffractometry and Mossbauer spectroscopy.

The mechanism of formation of the nitrosyl-containing iron complex in the presence of pertechnetateion and nitric acid solution is suggested.

¹T.A. Boytsova, A.A. Murzin, V.A. Babain, The pertechnetate-ion precipitation in nitric acid solutions with o-phen complex of iron (II) nitrate., «Russian-nordic Symposium on radiochemistry», Abstracts, p. 5, <u>http://rnsr.org/images/7%20boytsova.pdf</u>

²BoytsovaT.A., MurzinA.A., Babain V.A., Lumpov A.A. 1,10-phenantroline complex of iron(II) nitrate: the challenging salt for the technetium precipitation from nitric acid solutions., 17th Radiochemical conference, MarianskeLazne, Czech Republic, 2014, p.305

³ Накамото К., Инфракрасные спектры неорганических и координационных соединений// Мир, М., 1966, с 41

STATE ATOMIC ENERGY CORPORATION "ROSATOM"

Formation of nitrosyl-containing o-phenanthroline complex of iron in presence of TcO₄⁻ and HNO₃.

T.A. Boytsova, V.A. Babain, A.A. Lumpov, A.A. Murzin

OJSC "Khlopin Radium institute" 2-nd Murinskiy prospect 28, St. Petersburg, Russia tboytsova@khlopin.ru

Introduction

⁹⁹Tc is a synthetic long-lived radioactive isotope, the main source of which is a nuclear fuel irradiated with thermal neutrons. The ⁹⁹Tc yield is 1 kg ⁹⁹Tc from 1t of U.

In the spent nuclear fuel (SNF) reprocessing using different manufacturing flowsheets, technetium, partly distributes along the streams of major components, or can be outputted to the raffinate or individual stream. The presence of technetium in the streams of actinides affects their purity and thus the extra refining stages are required. Also, long half-life, chemical activity, and high environmental mobility of technetium compounds, present in the SNF solutions, directly indicate the necessity of safe technetium immobilization.

Earlier, to solve this problem, we proposed to precipitate Tc with organic complexes of transition metals[1].

^{1.} Boytsova T A, Murzin A A, Babain V A, Shadrin A Yu, (2014) RU PATENT 2513724. 20.04.2014, Bull 11 www.rosatom.ru

Maximum yield of Tc into the sediment: 93±5%

• The concentration of Tc 1 g/L in the initial solution

Boytsova T.A., Murzin A.A., Babain V.A., Lumpov A.A. 1,10-phenantroline complex of iron(II) nitrate: the challenging salt for the technetium precipitation from nitric acid solutions., 17th Radiochemical conference, Marianske Lazne, Czech Republic, 2014, p.305 www.rosatom.ru

- Initial solution: 1 g/L Tc, 1 M HNO₃;
- Precipitant solution- Ferroin nitrate.
- Mole ratios Ferroin/Tc = 1/2, 1/1, 1.5/1

Experiments at variable temperatures of the solutions

The temperature of the	The temperature of the precipitant solution, °C				
initial solutions, °C	15-20	45-50	65-70		
15-20	+	+	+		
45-50	-	+	-		
65-70	-	-	+		

<u>The main goal</u> of this work was to study the composition and structure of the precipitating compounds and the possible mechanism of their formation.

The	The temperature of the precipitant solution, °C								
temperature of the initial	15-20		45-50			65-70			
solutions, °C	Ferroin/Tc mole ratio								
	1/2	1/1	1/2	1/1	1.5/1	1/2	1/1	1.5/1	
15-20	1.67±0.08	1.38±0.07	0.94±0.05	2.03±0.10	1.44±0.07	0.89±0.04	1.67±0.08	0.77±0.04	
45-50	-	-	1.43±0.73	1.58±0.08	1.51±0.05	-	-	-	
65-70	-	-	-	-	-	0.89±0.04	0.95±0.05	0.67±0.03	
	Fo(nh	$(n)_{2}$		$(\mathbf{NO}_{\mathbf{v}})$	• nUa	0 2			

Fe(phen)₃(TcO₄)_x(NO₃)_y• nH₂O-?

www.rosatom.ru

1650-1940 cm⁻¹coordinated nitrozyl group literature, M, 1957, p.444

2. Nakamoto K., Infrared spectra of inorganic and coordination compounds.//The World Meters, 1966, p.412

The influence of the media and Ferroin counterion on the composition of the sediment

R

2. Nageswara R. N., Ulrich K. Synthesis and characterization of *trans*-[Re(L-L)2O(OH)](ReO4)2 (L-L=2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine) and *trans*-[Re(L-L)2O2]ReO4 (L-L=1,10-phenantroline) complex. Polyhedron, Vol.11-13, 1992, pp.1615-1622

a.	adiun	n,
5	-	20
9		12
-21	1	Ē
4	-	0

Mossbauer spectra of Fe(phen)₃(NO₃)₂ and Fe(phen)₃(TcO₄)_x(NO₃)_y

	Form 1				
Chemical formula	Isomer shift, mm/s	Quadropole spliting (Asymmetry parameter), mm/s	Breadth of the experimental line, mm/s	S, %	
Fe(phen) ₃ (NO ₃) ₂	0.32	0.25 (0.94)	0.19	100	
$Fe(phen)_3(TcO_4)_x(NO_3)_y$	0.32	0.24 (1.27)	0.19	100	

S - the proportion of the corresponding lines in the experimental spectrum.

Fe(phen)₃(NO₃)₂

$Fe(phen)_3(TcO_4)_x(NO_3)_y$

Mossbauer spectrum of Fe(phen)₂(NO)_x(TcO₄)_v(NO₃)_z

	Form 1			Form 2			Form 3					
Chemical formula	I.s., mm/s	Q.s. (A.p.), mm/s	G, mm/s	S, %	I.s., mm/s	Q.s. (A.p.), mm/s	G., mm/s	S, %	I.s., mm/s	Q.s. (A.p.), mm/s	G., mm/s	S, %
Fe(phen) ₃ (NO ₃) ₂	0.32	0.25 (0.94)	0.19	100								
Fe(phen) ₃ (TcO ₄) _x (NO ₃) _y	0.32	0.24 (1.27)	0.19	100								
$Fe(phen)_2(NO)_x(TcO_4)_y(NO_3)_z$	0.32	0.26 (1.32)	0.19	73	0.63	0.38	0.25	16	0.61	1.10	0.31	11

I.s.- Isomer shift;

Q.s.-Quadropole spliting;

A.p.- Asymmetry parameter;

G- Breadth of the experimental line;

S- the proportion of the corresponding bands in the experimental spectrum.

1. Precipitation.

 $Fe(phen)_{3}^{2+} + TcO_{4}^{-} + HNO_{3} \rightarrow Fe(phen)_{3}^{3+} + Fe(phen)_{3}(TcO_{4})_{x}(NO_{3})_{(2-x)} \cdot nH_{2}O + NO_{x} + H_{2}O$

2. Nitrozyl complex formation.(Drying with air in the presence of mother solution)

- $\operatorname{Fe^{II}(phen)_3(TcO_4)_x(NO_3)_{2-x}} \cdot nH_2O + HNO_3 \rightarrow \operatorname{Fe}(phen)_3^{3+} + TcO_3^{-}(TcO_4^{2-}) + NO_3^{-} + H_2O + \operatorname{Fe^{II}(phen)_3(TcO_4)_y(NO_3)_{2-y}} \cdot nH_2O$
- $TcO_3^-(TcO_4^{2-}) + HNO_3 \rightarrow TcO_4^- + HNO_2$
- $\operatorname{Fe^{II}(phen)_{3}(TcO_{4})_{y}(NO_{3})_{2-y}} \cdot \operatorname{nH_{2}O} + \operatorname{HNO_{2}} \rightarrow \operatorname{Fe^{II}(phen)_{3}(TcO_{4})_{z}(NO_{3})_{2-z}} \cdot \operatorname{nH_{2}O} (partial dissolution is possible) + \operatorname{Fe^{II}(phen)_{2}(NO)_{y}(TcO_{4})_{k}(NO_{3})_{2-k}} \cdot \operatorname{phen} \cdot \operatorname{nH_{2}O} + \operatorname{NO_{x}+H_{2}O}$

CONCLUSIONS

- The poorly soluble compound containing Tc and nitrate ions $(Fe(phen)_3(TcO_4)_x(NO_3)_{(2-x)} \cdot nH_2O)$ was formed at the first stage of the Tc precipitation with Ferroin nitrate. On the base of this compound stable Fe-Tc alloy could be obtained by the heat treatment in reductive or inert atmosphere.
- The pertecnetate-ions and nitric acid in presence of iron(II) complexes allowed to change the composition of this compound.
- Due to the catalytic properties of pertechnetate-ion in the presence of nitric acid and reductant on the base of the formed compound the nitrozyl complex of iron(II) $(Fe^{II}(phen)_2(NO)_y(TcO_4)_k(NO_3)_{2-k}\cdot phen\cdot nH_2O)$ can be obtained.

A new method for rapid extraction of rhenium from raw vegetation with subsequent determination of the metal under field conditions

Ognyan Bozhkov* and Christina Tzvetkova

Institute of General & Inorganic Chemistry, Bulgarian Academy of Sciences 1113 Sofia, Acad.G Bonchev str., bl. 11, Bulgaria *E- mail: bozhkov@svr.igic.bas.bg

It is known that the plant biosphere is a natural extractor and concentrator of Re from soils and waters. The authors of this paper developed a green technology for rhenium phytomining from the areas of Cu mines and Cu processing regions, where the Re is dispersed in soils and waters. For practical application of this technology with profit, is very important to find the places with Re concentrations of industrial importance in plants ($C_{Re} \ge 500$ g Re/t dry mass). This is established through regional studies on the rhenium distribution in the vegetation of a region. Field tests are suitable for this purpose.

The aim of the present study is to develop a simple and easy to apply in the field conditions procedure for Re extraction from raw vegetation, following by spot test determination of Re with N, N Dimethyldithiooxamide (DMDTO).

Previous investigations of the authors have shown indirectly that Re is accumulated in vacuoles of plant tissue as perrhenate ion. SEM analysis of vegetation with accumulated rhenium would prove directly rhenium location in the plant. For SEM analysis were prepared clover leaves with known Re content by immersing the clover stems in an aqueous Re solution with C_{Re} =1000µgRe/ml. The leaves were kept for 5 days in this solution and then removed from it. An accurately weighed quantity of clover was ashed and the Re was extracted from ash by an alkaline solution. In all cases, the content of rhenium in solutions was determined by catalytic method with DMDTO. The results of analysis showed that for 5 days the clover accumulate 1498 µg Re/ g raw mass, respectively 11261 µg Re/ g dry mass. These leaves were used in all further experiments. For SEM analysis the raw leaves of clover with Re were frozen with liquid nitrogen and dried in vacuum (0.120 mbars) at -50C^o with an Alpha- Crist Freeze-Dryer during 6 h. The lyophilized leaves were analyzed by SEM. The SEM pictures demonstrated that Re is accumulated in vacuoles of the plant. X-ray spectral microanalysis of freeze-dried clover leaves proved the existence of the element.

For full extraction of Re from raw vegetation is necessary to disrupted cell membrane of the vacuole and to leach Re as a ReO₄⁻ only by water. The authors have chosen the freezing of the raw leaves by liquid nitrogen, because in this process, the water in plants cells freezes and forms ice crystals that drill the cell membrane. Adding water to the frozen clover leads to its thawing and the resulting solution contains thawed plant and soluble components of the cell sap, including perrhenate ions. The plant mass was separated by filtration through filter paper and the filtrate was transferred into a measuring vessel and made up to volume with water. Determination of rhenium was done with an aliquot of this solution by semi-quantitative express spot test with DMDTO. The result showed that C_{Re} =1498 µg Re/ g raw mass, respectively 11261 µg Re/ g dry mass and are similar to those obtained by ashing.

As a result a simple rapid field test for Re determination in raw vegetation was developed. The method includes: a) freezing of raw mass with liquid nitrogen; b) water extraction of ReO_4 ; c) spot test determination of Re with DMDTO.

Acknowledgements: This work is supported by ESF (Grant BG051PO001-3.3.06-0050

A new method for rapid extraction of rhenium from raw vegetation with subsequent determination of the metal under field conditions

Ognyan Bozhkov* and Christina Tzvetkova

Institute of General & Inorganic Chemistry, Bulgarian Academy of Sciences 1113 Sofia, Acad.G Bonchev str., bl. 11, Bulgaria *E- mail: <u>bozhkov@svr.igic.bas.bg</u>

GREEN TECHNOLOGY FOR RHENIUM PHYTOMINING

The method is based on the unique property of Re to accumulate and concentrate in green vegetation in amounts exceeding hundred and thousand times its natural occurrence.

The technology includes following steps:

Regional investigation on the Re distribution in vegetation of Cu mining and Cu processing areas.

The regions with Re concentrations of industrial importance ($C_{Re} \ge 500$ g Re/t dry mass) are planted with Re hyperaccumulator, discovered by us, which is able to accumulate up to 46kg Re/t hay.

Harvesting the hyperaccumulator with Re.

Extraction of Re from hay and obtaining of perrhenate

For practical application of this method with profit the most important is to find the places with Re concentrations of industrial importance in plants ($C_{Re} \ge 500$ g Re/t dry mass). This is established through regional studies on the rhenium distribution in the vegetation of areas of: open Cu pit mine, Cu bioleaching and processing of Cu concentrates. Field tests are suitable for this purpose.

ped

om

For the development of a method for the rapid extraction of rhenium from raw plants is very important to know in which part of the cell is accumulated rhenium.

SEM analysis of vegetation with accumulated rhenium would prove directly rhenium location in the plant.

Preparation of clover leaves for SEM analysis by lyophylization

1. Freezing of clover with liquid nitrogen

2. Drying frozen clover in vacuum (0.120 mbars) at -50° C with an Alpha- Crist Freeze-Dryer during 6 h.

<section-header><text>

Results of X ray analysis

Element	Арр	Intensity	Weight	Weight%	Atomic%
			%		
	Conc.	Corrn.		Sigma	
C K	8.06	0.6820	25.08	1.23	58.22
O K	3.03	0.4935	13.05	0.70	22.74
KK	7.43	0.9680	16.31	0.47	11.63
Cu K	0.88	0.9159	2.03	0.66	0.89
Re M	18.01	0.8786	43.52	1.00	6.52
Totals			100.00		

Conclusions

1. The SEM pictures demonstrated that Re is accumulated in vacuoles of the plant.

2. X-ray spectral microanalysis of freeze-dried clover leaves proved the existence of the element in vegetation.

3. For full extraction of Re from raw vegetation is necessary to disrupted cell membrane of the vacuole and to leach Re as a ReO_4^- only by water.

Experimental approach of authors for Re

extraction from raw leaves.

1. The authors have chosen the freezing of the raw leaves by liquid nitrogen, because in this process, the water in plant cells freezes and forms ice crystals that drill the cell membrane.

2.Addition of water to the frozen clover leads to its thawing and the resulting solution contains thawed plant and soluble components of the cell sap of vacuoles, including perrhenate ions.

3. The plant mass was separated by filtration through filter paper and the filtrate was transferred into a measuring vessel and made up to volume with water.

Weighing and Freezing the clover leaves with Re

Thawing of plant mass by addition of water and extraction of ReO₄⁻

Separation of plant mass from leaching solution

Rapid spot test for Re determination with N'-N' Dimethyldithiooxamide

Equipment that you need for performance of the field test

Acknowledgements: This work is supported by ESF (Grant BG051PO001-3.3.06-0050

SORPTION SEPARATION OF RHENIUM AND ASSOCIATED COMPONENTS OF POLYMETALLIC RAW MATERIALS

I.D. Troshkina, N.V. Balanovskyi*, A.V. Shilyaev, V.A. Moiseenko, Nway Shwan Oo, A.P.Grehov

D. Mendeleyev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation. E-mail: <u>tid@rctu.ru</u> *Federal State Unitary Enterprise Leader Research Institute of Chemical Technology, Kashirskoye shosse 33, Moscow 115409, Russian Federation. E-mail: <u>tid@rctu.ru</u>

Among the non-traditional sources of rhenium raw materials, polymetallic uranium-containing ores are notable for complex composition and the presence of a number of valuable components – vanadium, molybdenum, rare earth elements [1, 2]. Complex processing of this raw material with relatively low content of associated metals includes operations of sorption using selective ion-exchange resins.

The aim of this investigation is to determine the conditions of sorption separation of rhenium, uranium and vanadium in sulfuric acid solutions, simulating the composition of productive solutions of underground leaching (ISL) of polymetallic ores.

As sorbents intended for uranium and rhenium recovery granular strong and weak base ion exchangers were used, produced by Federal State Unitary Enterprise Leader Research Institute of Chemical Technology (developer Balanovsky N.V.), Russian Federation and the company Purolite International Limited. In addition, to increase the rate of metals sorption fibrous nitrogen ion exchangers FIBAN (AK-22 and A-6) (Institute of Physical Organic Chemistry, Academy of Sciences of Belarus) were tested. Sorption has been carried out in static and dynamic conditions.

Determination of the parameters of sorption separation of rhenium and uranium was carried out at varying concentrations of natural fulvic acids (FA) present in ISL sulfuric acid solutions of polymetallic ores. Fulvic acid concentration was varied in the range $25 \div 300 \text{ mg/dm}^3$. Sorption of rhenium in the presence of fulvic acids by selected ion exchangers is almost unchanged. It was found out that rhenium selectivity of nitrogen-containing ion exchangers of different types and structures increases with increasing of fulvic acids concentration and the pH of the solution, and the greatest separation coefficients of rhenium and uranium (~ 50) are observed during the sorption by the macroporous weak base ion exchangers [3]. The separation factor of uranium and rhenium has a maximum (~ 50) by sorption from solutions containing $50 \div 100 \text{ mg FC /dm}^3$ [4].

Determination of the parameters of sorption separation of rhenium and vanadium was performed using fibrous ion exchangers FIBAN AK-22 and A-6. It was ascertained that the sorption rate of vanadium (V) present in the solution as decavanadate-ions of a large size is lower than the ion exchange rate of mobile perrhenate ion: the values of the effective diffusion coefficients, calculated with respect to half-sorption time, differ by an order that allows separate these elements under dynamic conditions [5].

References

- 1. A.A. Palant, I.D. Troshkina, A.M. Chekmarev. *Metallurgy of Rhenium*, Science: Moscow (2007). 298 p. (rus.).
- 2. *In-Situ Leaching of Ores*, Academy of Mining Sciences, Publishing House: Moscow (1998). 446 p. (rus.).
- 3. I.D. Troshkina., A.V. Shilayev, A.P. Grekhov. Sorption of Uranium and Rhenium in the Presence of Fulvic Acids. In: Abstract Book of the 2nd China-Japan Academic Symposium on Nuclear Fuel Cycle (ASNFC 2013). Shanghai. 2013, p. 36.
- 4. I.D. Troshkina, A.V. Shilyaev, E.V. Butorina et al. Method of rhenium recovery from uranium solutions. Pat. RF 2523892/02. C22B 61/00. Bulletin of inventions, Number 21. Date published 27.07.2014. (rus.).
- 5. Nway Shwan Oo, I.D. Troshkina, Aye Min, A.V. Shilyaev. Russian Journal of Non-Ferrous Metals. 2014, 55, № 3, 242-246.

The 8th International Symposium on Technetium and Rhenium: Science and Utilization (ISTR-2014)

D. Mendeleyev University of Chemical Technology of Russia

1

Federal State Unitary Enterprise Leader Research Institute of Chemical Technology

I.D. Troshkina, N.V. Balanovskyi*, A.V. Shilyaev, V.A. Moiseenko, Nway Shwan Oo

D. Mendeleyev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow. E-mail: tid@rctu.ru *Federal State Unitary Enterprise Leader Research Institute of Chemical Technology, Moscow. E-mail: info@vniiht.ru

SORPTION SEPARATION OF RHENIUM AND ASSOCIATED COMPONENTS OF POLYMETALLIC RAW MATERIALS

PROPERTIES OF RHENIUM

- Rhenium is present in the earth's crust at a very low concentration – 0.7 ppm

-Melting point of rhenium – 3180 °C (the highest melting metal next to tungsten, 3380 °C)

-Rhenium is **the only refractory metal** which **does not form carbides**

-Rhenium has high specific gravity (21.4) next only to Os, Ir, Pt

-Rhenium form compounds with valency -1,1, 2, 4, 5, 6, 7

-Rhenium has a **hexagonal close-packed structure** and does not undergo a ductile-brittle transformation (in contrast to other refractory metals)

The dynamics of the rhenium global market

(www.roskill.com/reports/minor-and-light-metals/rhenium)

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

RHENIUM RAW MATERIALS

Traditional:

- Molybdenum-copper sulfide ores

- Cupper sulfide ores

The terms of the depletion of rhenium in molybdenum raw materials – 45-50 years [Palant A.A., Troshkina I.D., Chekmarev A.M. Metallurgy of Rhenium. 2007 (rus.)]

Untraditional:

- Uranium-contained ores;
- Solutions of heap leaching of copper ores (USA);
- Fumaroles (Kurile Islands, Iturup, Russia);
- Carbonaseous sources (coal, oil shale);
- Mine water

- Spent Fuel [M. Ozawa, et al. 7th Int. Symp. on Technetium and Rhenium - Science and Utilization: Book of Proceedings. July 4-8, 2011, Moscow, Russia (Eds. K.E. German, B.F. Myasoedov, G.E. Kodina, A. Ya. Maruk, I.D. Troshkina). Moscow: Publishing House GRANITSA, 2011. P. 107-111]

Re in U-ores

USA:

1969-1974, Falls City, Texas area by Susquehanna Corporation \rightarrow Shattuck Chemical in Denver

Former USSR: 1978, Central Asia, Bukinayskaya group,

underground leaching

The content of rhenium in the uranium ores

Type of the deposit	Deposit	Re, g/t
Sedimentary	Colorado Plateau (Sun Valley)	0.5 –3.0
Stratum-infiltration	South Dakota	up to 50

Rhenium in the ore bodies found in forms: oxide, sulphide and native

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

Forecasting-metallogenic map of rhenium deposits of Russian Federation

(IMGRE, Russia, Kremenetsky A.A. and others, 2010)

LOWER CONCENTRATION LIMIT OF COST-EFFECTIVE PROCESSING

(In-Situ Leaching of Ores / N.P. Laverov et.al. M., 1998)

Element	Concentration				
	limit, mg/l	Profitability of rhanium			
Rhenium	0.2	recovery – 540 %			
Selenium	10	(concentration of Re, mg/l:			
Molybdenum	10	Initial – 0.2, residual – 0.1)			
Vanadium	40-50				
Scandium	0.3				
TR	10				

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

The aim of this work

is to study of possibility of increasing of rhenium selectivity in the process of sorption of uranium and by-product from sulfuric acid solutions modeling solutions obtained in the uranium underground leaching

The work was carried out in two directions:

- 1) the study of the influence of **fulvic acids** on the selectivity of rhenium sorption by anion resins from uranium-contained sulfuric acid solutions
- *2)* the study of possibility of **kinetic separation** of rhenium and vanadium in the sorption by **fibrous** ionites

THE ALLOCATION SCHEME OF FA

THE FRAGMENT OF FA

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

EFFECT OF pH OF MINERALIZED SOLUTIONS ON THE DEGREE OF DEPOSITION OF URANIUM AND RHENIUM IN THE PRESENCE OF FA

*Analysis of uranium and rhenium was carried out by photocolorimetric method

THE SCHEME OF ULTRAFILTRATION

 φ – selectivity C_p – concentration in the permeate, N: mg/l

THE SCHEME OF LABORATORY-SCALE INSTALLATION: 1 – MEMBRANE UNIT; 2 – PLUNGER PUMP; 3 – MANOMETER; 4 – VALVE

 C_{Re} – concentration in the feed solution, mg/l

CHARACTERISTICS OF THE ULTRAFILTRATION MODULE

	Filtration surface, m ²	The	Ultrafil	The nominal intercepted	
		membrane material	diameter, mm	length, mm	molecular weight, amu
	0,02	polysulfone	25	250	20000

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

ULTRAFILTRATION BEHAVIOR OF URANIUM AND RHENIUM IN SULFURIC ACID SOLUTIONS IN THE PRESENCE OF FA

Molecular weight of FA associates are from 300 to 60000 amu

pН		Concer	Sel	ectivity	, %						
	FA	U		Re		FA	U	Re			
	after UF	before UF	after UF	before UF	after UF						
	Concentration FA – 50 mg/l										
2,00	42	8,1	5,8	10,9	9,1	16,0	28,4	16,5			
3,00	42	8,1	3,8	10,9	9,3	16,0	53,0	14,7			

URANIUM SORPTION BY ACTIVE CARBON IN THE PRESENCE OF FULVIC ACIDS

Conditions: active carbon – SN-P (Russia), U – 8,6 mg/l, SO_4^{2-} – 10 g/l, Cl⁻ – 1 g/l, phase ratio (active carbon : solution) – 1 : 1000

рН	Concentration of FA, mg/l	Concentration of uranium in solution after sorption, mg/l	Capacity of the sorbent for uranium, mg/g
2	0	8,6	0
	50	8,6	0
3,5	0	8,6	0
-)-	50	0,5	8,1

$2\text{FA-COOH} + \text{UO}_2^{2+} \leftrightarrow (\text{FA-COO})_2 \text{UO}_2 + 2\text{H}^+$

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

CHARACTERISTICS OF ION EXCHANGERS

Ion exchanger	Purolite	Lewatit	Purolite	Lewatit	
	A-170	MP-62	A-600	К6367	
	Wea	k base	Stro	ng base	
Ionic form	The fr	ree base	Cl-		
Functional	Secondary	Tertiary	Quaternary ammonium		
group	amine	amine	base		
Matrix		Crosslinked J	polystyrene		
Structure	Micro	oporous	Gel		
The limit on the exchange capacity for Cl ⁻ , g-eqv/kg (l)	(1,3)	(1,7)	(1,4)	(1,4)	

CHARACTERISTICS OF STRONG BASE ION EXCHANGERS ROSSION

Typical pore size distribution in nanostructured ion exchangers

Spherical microgranules (200-400 nm)

diametr pores, mkm (Troshkina I.D., Balanovsky N.V., Shilyaev A.V. et al. *Chemical Technology*, 2011)

Parameter	25-35	25-65	62	510	511	610	611
Granulometric composition, mm	0,63 -2,0	0,63-2,0	0,63- 1,6	0,63-1,6	0,63-1,6	0,63-1,6	0,63-1,6
Mechanical strength, %	97	99	96	97	96	97	95
Specific volume of swollen anion in water in the form of Cl ⁻ , cm ³ /g	2,42	2,43	2,7	2,4	2,7	2,6	2,85
The limit on the exchange capacity for Cl ⁻ -ion, mg- eqv/g	5,63	4,88	4,2	3,3	3,5	3,8	3,7
Specific surface, m ² /g	9,0	9,0	<1	0,1	1	0,1	1
Total pore volume, cm ³ /g	0,29	0,23	0,12	0,13	0,08	0,13	¹⁵ 0,08

STATE OF URANIUM AND RHENIUM IN SOLUTIONS

URANIUM

The exit of uranyl sulfate complexes depending on pH of the solution: $1 - UO_2^{2+}$, $2 - [UO_2SO_4]$, $3 - [UO_2(SO_4)_2]^{2-}$, $4 - [UO_2(SO_4)_3]^{4-}$ (Lipilina, 1957)

Perrhenate-ion: ReO₄⁻

The distribution of uranyl hydroxocomplexes depending on pH: $1 - UO_2^{2+}$, $2-[UO_2OH]^+$, $3 - [UO_2(OH)_2]$

THE SORPTION CAPACITY OF THE ION EXCHANGER FOR URANIUM & RHENIUM BY THE URANIUM RECOVERY FROM SULFURIC ACID AND SULFURIC-FULVIC ACID SOLUTIONS

Terms: [Re]initial- 5 mg/dm³, [U]initial - 5 mg/dm³, [Fe⁺³] - 100 mg/dm³, [Cl⁻] - 1 g/dm³, [SO₄²⁻] - 10 g/dm³, [FA]initial - 50 mg/dm³, pH 2

Resins	Capacity, mg/	S _{Re/U}	
	U	Re	(with no FA)
	strong base anion	n exchange resins	
Lewatit K6367	1,8 (4,3)	14,2 (17,1)	3,3 (10,7)
Purolite A-600	1,1 (3,2)	16,0 (19,1)	5,5 (20,8)
Rossion-62	8,8 (10,7)	15,5 (15,7)	18,0 (1,6)
	weak base anion	exchange resins	
Lewatit MP-62	4,3 (7,9)	15,3 (17,3)	3,7 (2,4)
Purolite A-170	0,5 (3,5)	18,4 (20,9)	47,4 (8,1)

I.D. Troshkina, A.V. Shilyaev, E.V. Butorina et al. Method of rhenium recovery from uranium solutions. Pat. RF 2523892/02. C22B 61/00. Bulletin of inventions, Number 21. Date published 27.07.2014. (rus.).

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

EFFECT OF FA CONCENTRATION ON URANIUM CAPACITY CHARACTERISTICS OF RESINS OF VARIOUS TYPES

HENRY'S CONSTANT FOR ISOTHERMS OF ADSORPTION OF URANIUM AND RHENIUM FROM SULFURIC-FULVIC ACID SOLUTIONS

Resins	Capacity (withou	y, mg/g ut FA)	S _{Re/U}	Henry's constant, l/g (correlation coefficient)			
	U	Re	(Without FA)	U	Re		
		strong	base anion	exchange resins			
Rossion-62	8,8 (10,7)	15,5 (15,7)	18,0 (1,6)	1,77±0,66 (0,86) (2,25±0,74)(0,89)	3,68±1,04 (0,92) (3,71±1,04)(0,92)		
		weak b	oase anion d	exchange resins			
Lewatit MP-62	4,3 (7,9)	15,3 (17,3)	3,7 (2,4)	0,83±0,18 (0,95) (1,53±0,68)(0,8)	3,63±1,02 (0,92) (4,28±0,86)(0,96)		
Purolite A-170	0,5 (3,5)	18,4 (20,9)	47,4 (8,1)	0,08±0,04 (0,77) (0,69±0,12)(0,95)	4,67±0,80 (0,97) (5,66±0,80)(0,98)		

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

EFFICIENCY OF URANIUM SORPTION BY STRONG AND WEAK BASE RESINS IN THE PRESENCE OF FA

 $\alpha = 100 - (\Delta CE/CE \text{ without FA}) \cdot 100 \%$

Sorbents with improved kinetic properties:

fibrous ion exchange materials FIBAN

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

Physicochemical parameters of FIBAN ionites

Parameter	AK 22	A6
Functional group	≡N, ≡NH, –COOH	(C ₃ H ₅ O)(CH ₃) ₂ N ⁺ Cl ⁻ , -N(CH ₃) ₂
Polymer base	Polyacrylonitrile cloth	Polyacrylonitrile cloth
Physical form	Staple cloth, nonwoven needle-punched fabric	Staple cloth, woven fabric
Optimal sorption capacity, mg-eq/g	>3.5 (by amino groups) 1.0 (by –COOH)	2.0 (by $-N+\equiv$) 0.8 (by $-NR_2$)
Working range of pH	0–8	0–13
Working temperature range	0–80°C	0–80°C
Optimal swelling, gH ₂ O/g ionite	0.7	1.2

Integral kinetic curves of rhenium sorption from sulfuric acid-chloride solutions with the FIBAN ionite

*Troshkina I.D., et al. Recovery of rhenium from aqueous solutions by fibrous materials // 7th Intern. Symp. on Technetium and Rhenium – Science and Utilization. Book of Proceedings. July 4-8, 2011, Moscow, Russia. P. 288–292.

**Aye Minn, Shilyaev A.V., Troshkina I.D Sorption of rhenium from mineralised solutions by fibrous sorbents FIBAN // Sorption and chromatografic processes. 2013 (13), issue 2. P. 199–206 (rus.).

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

Comparison of integral kinetic curves of sorption of (a) rhenium and (b) vanadium from sulfuric acid-chloride solutions with the FIBAN ionite of the AK-22 brand

t. min

Nway Shwan Oo, I.D. Troshkina, Aye Min, A.V. Shilyaev. *Russian Journal of Non-Ferrous Metals*. 2014, *55,* № *3*, 242-246.

Kinetic characteristics of sorption of rhenium(VII) and vanadium(V) by the FIBAN AK-22 ionite

 $D = 0.06R^2/\tau_{0.5}$

where D is the effective diffusion coefficients of metal in ionite, m²/s; $\tau_{0.5}$ is the half-transformation time, s; and R is the fiber radius, m (its averaged magnitude is 30 µm)

Metal	τ _{0.5} , s	<i>D</i> , m ² /s
Re	60	9.0*10 ⁻¹³
V	7200	7.5*10 ⁻¹⁵

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

Breakthrough sorption curves of (a) rhenium and (b) vanadium by the FIBAN ionite of the AK-22 brand from the sulfate-chloride solution

Column: volume 2.7 cm³, diameter 0.7 cm, the height 7 cm

CONCLUSIONS

- 1. Capacitive characteristics for uranium of both strong base and weak base resins become worse in the presence of fulvic acids. At the same time the least negative effect is observed in case of uranium sorption by nanostructured ion exchanger Rossion-62.
- 2. The presence of fulvic acids has practically no effect on the sorption of rhenium from uranium mineralized solutions by ion exchangers of various types.
- 3. The separation factor of uranium and rhenium has a maximum (~ 50) by sorption from solutions containing $50 \div 100 \text{ mg FC/l}$.
- 4. It was established that effective diffusion coefficients of Re(VII) and V(V) in the sorption process by fibrous ion-exchange material FIBAN AK-22 differ by two orders of magnitude (Re 9.0×10^{-13} m²/s and V- 7.5×10^{-15} m²/s), which makes it possible to separate them in dynamic conditions.

The 8th International Symposium on Technetium and Rhenium: Science and Utilization, September 29th - October 3rd 2014

Thank you for your attention

Prof. Irina Troshkina presenting the sorption methods for Re separation

Presentation by A. Hagenbach from Frei University Berlin on Tc(V) and Re(V) oxido complexes with tetradentate thiocarbamoylbenzamidines for bioconjugation

Presentation by Peter Kelley on plasma thechnology for Re and Pt recovery

A. Safonov, Mm. Zakharyan, S. Zakharian, K. Cubova, W. Kerlin, U.Abram, B.Cabral

Ionosilicas for Ion Exchange Reactions

P. Hesemann¹, M. Gigue², P. Moisy², B. Prelot¹, U. D. Thach¹

¹Institut Charles Gerhardt, 34095 Montpellier Cedex 05, France ²CEA Marcoule DEN/DRCP, 30207 Bagnols-sur-Cèze, France

Ionosilicas are defined as silica based materials containing covalently tethered ionic groups.¹ These materials, situated at the interface of silica hybrid materials and ionic liquids, have large potential in catalysis, molecular recognition and separation. Ionosilicas are usually obtained *via* template directed hydrolysis-polycondensation reactions using ionic trialkoxysilylated precursors. Due to their ionic nature, these precursors often display very particular behavior in these bottom-up approaches, especially in the presence of ionic structure directing agents. Nanostructured phases can particularly be obtained *via* the formation of special precursor-surfactant assemblies, thus ensuring high accessibility of the immobilized ionic species.

This talk will focus on applications of ionosilicas as ion exchange materials. We will firstly show that imidazolium containing ionosilicas² are highly efficient anion exchange materials displaying high distribution coefficients for a large range of soft anionic species. Furthermore, we observed that these materials display Hofmeister selectivity. The distribution coefficients D differ according to the nature of the anion: for soft anions such as pertechnetate (TcO_4) , considerably higher D-values were observed than for harder anions (chloride, bromide). This behavior enabled us to use the TcO₄-anion as a probe revealing the hardness/softness of anionic species. In the second part of this talk, we will show that ionosilicas containing ammonium entities³ are highly versatile anion exchange materials for a large variety of anionic species. Here, the sequestration of Cr(VI) was investigated by means of the effect of contact time, pH and initial concentration of Cr(VI). Kinetics of the exchange are fast, reflecting a good accessibility of the ionic sites. The adsorption was shown to be pH dependen.. The maximum adsorption capacity of ionosilica was found to be 2.5 mmol g^{-1} , which is at least two times higher than for commercial ion exchangers. Interestingly, this capacity corresponds to approx. 80% of the molar amount of incorporated ionic groups. Desorption studies indicated that the anion can be removed from the solid and therefore showed that the material can be re-used.

In conclusion, our results show that ionosilicas are highly efficient anion exchange materials. Besides the high potential of these materials for applications in water treatment, depollution of industrial wastewater or the nuclear fuel cycle, this study gives interesting information concerning the accessibility of functional groups in silica based materials.

References

P. Hesemann, S. El Hankari, T.P. Nguyen, *Materials* 7, 2978 (2014).
 B. Gadenne, P. Hesemann, J.J.E. Moreau, *Chem. Commun.* 2004, 1768-1769
 S. El Hankari, B. Motos-Pérez, P. Hesemann, A. Bouhaouss, J.J.E. Moreau, *J. Mater. Chem.*, 21, 6948 (2011)

UMR 5253 - Institut de Chimie Moléculaire et des Matériaux de Montpellier

Ionosilicas for Ion Exchange Reactions

<u>P. Hesemann¹</u>, P. Moisy², M. Gigue², U. D. Thach¹, B. Prelot¹

¹ Institut Charles Gerhardt, 34095 Montpellier Cédex 05, France ² CEA Marcoule, DEN/DRCP, 30207 Bagnols-sur Cèze, France

peter.hesemann@univ-montp2.fr

Outline

- lonosilicas: definitions and generalities
- Syntheses of structured lonosilicas
- Ion Exchange Reactions with Ionosilicas
 - TcO₄ adsorption on surface functionalized ionosilicas
 - CrO₄²⁻ adsorption on hybrid ionosilicas
- Conclusions

Template directed synthesis of nanostructured silica

Figure 14. Possible mechanistic pathways for the formation of MCM-41: (1) liquid crystal phase initiated and (2) silicate anion initiated.

cooperative processes

Beck et al., J. Am. Chem. Soc. 1992, 114, 10824

Surface functionalized ionosilicas

Catalytic Ionosilicas by Ion Exchange Reactions

(collaboration M. Pagliaro, Univ. Palermo, Italy)

Aerobic oxidation of alcohols using the RuO₄-doped Ionosilica

Chem. Eur. J. 2006, 12, 5220

Montpellier Charles Gerhardt

Applications of Ionosilicas: Ion exchange reactions

log D values of TcO_4^- in the presence of various anions (c = 0.1 mol/L)

 TcO_4^- as a probe for the hardness/softness of anionic species Qualitative and experimental reproduction of Hoffmeister's series

CO32 SO42 S2O32 H2PO4 F OF Br NO3 F CIO4 SON

Montpellier Charles Gerhardt

A special case: fluorinated anions

Particularly 'imidazophilic' behavior of fluorinated anions (reason for the particular behavior of Ionic Liquids of the **BMIM-NTf**₂-type?)

J. Mater. Chem. 2010, 20, 3910 - 3917

Conclusions

- Ionosilicas: structured silica based materials with covalently bound ionic groups
- Surface functionalized ionosilicas / Hybrid ionosilicas
- Ionosilicas are highly efficient Ion Exchange Materials
 - a) High distribution coefficients
 - b) Hofmeister selecivity
 - c) Reversibility
 - d) High capacities (hybrid ionosilicas)

Acknowledgements

<u>PhD students</u>

- Dr. Benoît Gadenne
- Dr. Thy Phuong Nguyen
- Dr. Samir El Hankari
- Ut Dong Thach

Collaborators

- Dr. Philippe Moisy, Mireille Gigue
- Dr. Mario Pagliaro, Palermo, Italy
- Dr. Bénédicte Prelot, Montpellier, France

Template directed hydroysis-polycondensation of ionic precursors

Synthesis of silica hybrid materials bearing **chemically anchored ionic species**

- Syntheses of nanostructured ionosilicas
- Applications: catalysis, separation

Hybrid ionosilicas / Periodic mesoporous ionosilicas

Structuration

- Does the ionic nature of silylated precursors may **influence the architecture** of the formed *ionosilicas* ?
- Does it allow to obtain materials with **particular architectures**, inaccessible *via* other synthetic pathways ?

Chem. Commun. 2011, 47, 6704-6706

<u>Precursor-induced structuration</u> Structured phases are from appropriate **precursor-surfactant ion pairs**

Eur. J. Inorg. Chem. 2012, 5288-5298

Applications of Ionosilicas: Organocatalysis

(collaboration A. Thomas, TU Berlin, Germany)

Cycloaddition of CO₂ to epoxides

cat.

Appl. Organomet. Chem., DOI: 10.1002/aoc.2974

Cooperative nucleophilic-electrophilic activation

Other examples: Henry reaction, Baylis Hillman reaction, Michael additions... J. Mater. Chem. 2011, 21, 6948-6955, Chem. Commun. 2011, 47, 6704-6706,

ILMAT 2013 Ionic Liquid Derived Materials

Montpellier, France 18-20 november 2013

G

Covered topics

- ILs as synthesis media
- ILs as material precursors
- Materials containing ionic species
- Building blocks inspired from ILs
- ILs as structuring or processing agents

http://ilmat2013.icgm.fr

Formation of structured phases thanks to the presence of the ionic precursor

lonic precursors often play a determinant role in the formation of nanostructured silica hybrid materials and allow to access original ionosilicas displaying unique features.

Tc-halogenists: F. Poineau, K.German, A. Sattelberger, W. Kerlin

сазпидроМедь

S. Zakharian from Kazakhstan gives the lecture on rhenium separation in industrial scale

ISTR Chairs :

Thomas Gerber (South Africa, Port Elizabeth – 2008)

Konstantin German (Russian Federation, Moscow - 2011)

Massoud Fattahi (France, Pornichet – 2014)

STUDY ONRHENIUM SORPTION ATHIGH RATE FROM WASHING ACID OF THE SULPHURIC ACID PLANT AT BALKHASH COPPER PLANT

S.V. Zakharian^{**}, A.B. Yun^{**}, E.I. Gedgagov^{*}, I.V. Terentieva^{**}

* - FSUE"GINTSVETMET Institute", Moscow c., Russia ** - KazGidroMed LLP, Karaganda c., Kazakhstan

studypurposeisindustrial rheniumsorption at high This rate torecoverrhenium fromsulfuricprocesssolutionsintermsofrelativelylowconcentrationoftargetcomponentanddevelop mentofhigh ratedesorptionofrheniumforlow-basicanionite.

Asitseenbelow sorptionofrheniumonisoporouslow-basicanionite (Picture 1) (PuroliteA170)as the process solution (flushing acid from Sulphuric Acid plant at Balkhash Copper plant) passthrough the dense layers of sorbent at different rate.

AsitisseenonPicture sorbentisfullysaturatedasabout 3000 1. ofspecificvolumeofsolutionarepassedthrough, and anioniteA170 capacity for rhenium is 13-18 g/l of ionite, where solution content for saturation is almost equal to solution used for sorption of AsitisseenonPicture 1, rheniumsorptioncurvesgiven rhenium on strongly basic tars. arealittledifferent.Itmeansthatsorptionofrheniummaybeperformed with solution passingathighrate, and therate should be adjusted due to rhenium concentration in sorption solution.

Asarule, decrease of C_{Re}in base solution should be accompanied by increase of sorption rate.

Pic. 1Abovegivenrheniumsorptioncurve(dependenceofrheniumfractionalabsorptionF, % tospecificvolumepassedthroughalayerofPuroliteA 170 forprocesssolution- washing acid from the Sulhuric Acid Plant at Balkhash Copper Plant at different throughput rate.

- 1 sorptionrate 10 vol/vol ofionite per hour:
- 2 sorption rate 15 vol/vol ofioniteperhour.

 $F = \frac{C_i}{C_{max}} \cdot 100 \%, where$ $C_i - concentration of rhenium in solution after a sorption column at the point of curve;
for the solution of rhenium in solution after ionite is fully saturated with rhenium in solut$ C_{max} – concentration of rhenium in solution after ionite is fully saturated with rhenium. Content of base solution to sorption,g/l:

0.007-0.009 Re; 0.011-0.030 Se; 1.5 As; 40 H₂SO₄.

				Товарищест	шалт шактаул стракта Подромед во с ограниченной ответственно
This study recover Re low conce rate desor	purpose is e from sul ntration of ption of rh	s industria f <mark>uric proce</mark> target cor enium for l	rhenium ss solution nponent a ow-basic a	sorption at s in terms nd develop nionite.	high rate of relative ment of hig
Table 1 – absorption process so Plant at dif	Above given to F, % to speci- solution – washi fferent through	rhenium sorption ific volume pa ng acid from to but rate. (H:d contracted on the source of the sourc	on curve (depo ssed through a he Sulhuric A olumn 9:1; ten	endence of rher a layer of Puro cid Plant at Ba nperature 21°C)	nium fractional lite A 170 for lkhash Copper
Sol ption rate					E 9/
281	0,0004	3,8	219	0,0002	2,4
482	0,0019	18,5	500	0,0007	8,6
926	0,0035	34,0	932	0,0026	32,1
1026	0,0052	50,5	1557	0,006	74,0
1500					
	0,0087	84,4	2250	0,0076	95,0

7 s H t ([Fable 2 – a aturated AZAKH hrough io Compositi Desorption	Comparison from wash MYS Corp nite layer. on of ZhMZ temperature	in results of a results of a results of a result of a	ammoniac o om the sul LP , at va saturation, g Desorbiruyu	desorptio furic ac rious ra g/1: 0,22 3 shchy so	on of rheni id plant a te of deso Re; 0,001 S lution – 8%	ANKEPHIAIT WE ANKEPHIAIT WE UMULTER CONTAINENT UMULTER CONTAINE	variable construction variable construction gan smelt tion passion 84,5 H2SC	70 rer, ing
	V _s / V _{i.}	$\Sigma V_{s} / V_{i.}$	Rate of de 2 vol./vol	sorbent throu I. ionites per	ıghput hour	Rate of desorbent throughput 9 vol./vol. ionites per hour			
			t, min.	Re, g/l	% des. Re	t, min.	Re, g/l	% des. Re	
	1,5	1,5	45	16,95	45,6	10	26,23	61,4	
	1,5	3,0	45	15,93	86,3	10	15,75	98,28	
	1,5	4,5	45	3,59	95,8	10	0,69	99,9	
	1,5	6,0	45	1,14	99,0	10	0,021	99,93	
ſ	1,5	7,5	45	0,27	99,7				
			The average maintenance of Re in commodity desorbate 9.37 g/l commodity desorbate 21.0 g/l						

able 3 – Com opper Smelt composition esorption ter esorption so	parison results of er of KAZAKHM of BMZ solution mperature – 23 % lution – 8% of NH	of ammonia dese IYS Corporatio for saturation, g 2. 3.	orption of rheniu on LLP, at variou /l: 0,0094 Re; 0,0	m with Purolite A s rate of desorbe 15 Se; 50 H ₂ SO ₄)	A170 saturated nt solution pass	from washing aci	id from Balkash onite layer.	
		Ra	Rate of desorbent throughput			Rate of desorbent throughput		
$V_s / V_{i.}$	$\Sigma V_s / V_{i.}$	t, min.	Re, g/l	hour % des. Re	t, min.	vol./vol. ionites per Re, g/l	hour % des. Re	
0,5	0,5	30	0,216	0,98	3,3	17,4	80,0	
0,5	1,0	60	7,48	35,08	6,7	3,7	97,0	
0,5	1,5	90	13,42	96,18	10,0	0,65	98,8	
0,5	2,0	120	0,574	98,78	13,3	0,013	99,9	
1,0	3,0	180	0,076	99,47		-	-	
1,0	4,0	240	0,022	99,67		-	-	
		The average	maintenance of R desorbate 5,41	te in commodity g/l	The average	e maintenance of F desorbate 7,25	te in commodity g/l	

STUDY ON RHENIUM DESORPTION AT HIGH RATE FROM MACROPOROUS

LOW BASE IONITES

S.V. Zakharian^{**}, A.B. Yun^{**}, E.I. Gedgagov^{*}, V.A. Chen^{**}

* - FSUE"GINTSVETMET Institute", Moscow c., Russia

** - KazGidroMed LLP, Karaganda c., Kazakhstan

This study purpose is development of rhenium desorption at high rate for low-baseionites, in particular, with macroporousPurolite F170 which is advised for rhenium sorption in terms of washing acid from the Sulphuric Acid Plant at Balkhash Copper Plant, Kazakhmys Corporation LLP.

OnPicture1 – desorbing solution versus desorptionofrheniumammoniawith isoporousPuroliteA170 saturated from washing acid from the Sulphuric Acid Plant at Balkhash Copper Plant, Kazakhmys Corporation LLP, from of weak ammonia desorbent through ionites layers in columnsat different rate.

Asitisseenbelowrheniumdesorptionathighratehas an advantage over a standard method.

 Pic.
 1 DesorbingsolutionvolumeversusdesorptionofrheniumwithisoporousPuroliteA

 170,saturatedfromwashingacidof the Sulphuric Acid Plant at Balkhash Copper Plant, Kazakhmys Corporation LLP, of volumes passed through desorbing solutions at different rate of desorption.

In both cases content of desorbent -6 % NH₃.

Rate of desorbent throughput:

1 - 2 vol./vol. ionites per hour;

2-9 vol./vol. ionites per hour.

Therefore, during ammonia desorption of rhenium at high rate the increase of rhenium concentration in commercial eluate is clearly seen, whereas commercial fraction output at high rate is nearly decreased twice.

MOLYBDENUM-99 PRODUCTION FROM A THORIUM TARGET IRRADIATED BY LIGHT CHARGED PARTICLES UP TO 70 MeV

<u>Charlotte DUCHEMIN^a*</u>, Arnaud GUERTIN^a, FeridHADDAD^{a,b}, Vincent MÉTIVIER^a, Nathalie MICHEL^b

^aSUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes, France; ^bGIP Arronax, 1 rue Aronnax, 44817 Saint-Herblain, France *Corresponding author:Charlotte.Duchemin@subatech.in2p3.fr

Introduction

The irradiation of a thorium target by light charged particles leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of ²³⁰Pa which decays to ²³⁰U the mother nuclei of ²²⁶Th, a promising isotope for the alpha radionuclide therapy. The fission of ²³²Th produces fragments of interest like ⁹⁹Mo, ¹³¹I and ^{115g}Cd. ⁹⁹Mo is of particular interest since it is the mother nucleus of ^{99m}Tc which is used in nuclear medicine for imaging. The production cross section measurements and production yields of ⁹⁹Mo have been determined in this study.

Description of the Work or Project

The cross section measurements were made using the stacked-foil technique and the experiments were carried out at the ARRONAX cyclotron (France) with deuteron and proton beams up to 34 and 70 MeV, respectively.

Since high Z target can encounter fission, 22 fission fragments cross sections are reported for the first time as a deuteron energy distribution on the range 8-33 MeV. Fission data induced by protons have been already published up to 22 MeV. As our proton beam reached 70 MeV,our values comesupplement the existing ones.

These data allow us to determine production yield with a high accuracy and in particular for the ⁹⁹Mo production which have been estimated in the past by extrapolating low proton energy data [Abbas et al., 2012].

Conclusions

This work complements nuclear data on production cross section induced by protons and deuterons. It also gives new results on the fission of ²³²Th induced by light charged particles. Larger quantities of ⁹⁹Mocan be obtained using the fission of ²³²Th than the ⁹⁶Zr(α ,n) direct production, and the specific activity is higher than the ¹⁰⁰Mo(p,2n)⁹⁹Mo reaction channel.

Keywords:Cross section measurements, thorium target, fission, medical isotopes, ⁹⁹Mo/^{99m}Tc generator.

¹⁸⁸Rhenium: application for glioblastoma internal radiotherapy.

Annabelle Cikankowitz, Micro et nanomédecines biomimétiques, Labex IRON, AMaROC, ONIRIS, PRIMEX

The aim of the proposed work is to provide evidences that stereotactic internal radiotherapy through lipid nanocapsules loaded with Rhenium-188 (LNC¹⁸⁸Re-SSS) is an alternative radiotherapeutic strategy for glioblastoma (GB) that can be translated to human medicine.

That strategy implies Convection-Enhanced Delivery (CED), a new local infusion method for brain application that can be defined by two parameters: the volume of infusion (Vi) and the volume of distribution (Vd). The distribution of therapeutical agent by CED can be improved with the use of a vector which brings a retention effect. However, many parameters such as the kind of tissue, tumor size, pressure... influence the CED efficacy. Herein, we would like to determine the best injection modalities of our LNC¹⁸⁸Re-SSS by CED depending on the role of the flow rate, the injected volume and its tissue localization.

Materials and methods:

The orthotopic human GB Lab1 xenograftmodel in nudemice was infusedlocallybyconvectionenhanceddelivery (CED) with an increasingvolume (3µL, 5µL, 10µL or 15µL) of LNC loadedwith a lipophilicfluorescentredstain (DID) orLNC¹⁸⁸Re-SSS (3MBq), 12 or 18 days after theinjectionof Lab1 cellsintothestriatum . The influenceoftwoflowrates (0,25 or 0,5 µL/min) on the LNC distributionwithinthetumormass was tested. Tumor progression was monitored by µMRI through theselection of RegionsOf Interest(ROI) in order to determine the tumorvolume the day previous the LNC injection.Vd of LNCs was evaluated by immunofluorescence (brain frozen 1h after infusion of DID-LNC) and by autoradiography (brain harvested 1h and 24h after the injectionofLNC¹⁸⁸Re-SSS).

The efficacy of LNC¹⁸⁸Re-SSS in the orthotopic human GB Lab1 xenograftmodel with a selected infusion mode (volume and flow rate set) was tested through a fractionated treatment at day 12 and day 19 after the tumor cell injection. The influence of this treatment on the immunological brain environment, the angiogenesis and the tumor proliferation was analysed by immunofluorescence at day 18 (CD31, ki67, CD45R and F4/80).

Results:

Preliminary findings with Lab1-Nude models at day 12 suggested a suitable LNC-DID distribution after a personalized tumor targeting with injection modalities of 3μ L; 0.5μ L/min (mean tumor volume of 2.3μ L). This Vi is acceptable because of high Vd for the injection of 10 and 15μ L. No more than 5μ L could be injected in mice striatum because of leakage in the left brain hemisphere with higher Vi. Thus, the tumor volume should be determined by μ MRI the day before in order to define Vi at best. Vd is also influenced by flow rate: a weak flow rate of 0.25μ L gives a higher Vd (12.6μ L vs 15.8μ L).

Results indicated thatLNC¹⁸⁸Re-DID show the same tendency as fluorescence. Indeed, at day 12 and 1h after the injection of 3μ L, we obtain a Vd of $10,2\mu$ L ± $1,9\mu$ L by fluorescence analysis and a same range in 1mm brain slices with the blue DID color: $12,6\mu$ L ± $3,8\mu$ L. There is a 2-fold increase for the Vd between 1h and 24h. Autoradiography data are under analysis.

Immunofluorescence results indicated a decrease of Ki67+ cells number, a disorganization of vessels and an infiltration of macrophages around big tumour cells (1918 F4-80+/mm² vs 258 F4-80+/mm²) and B lymphocytes (270 CD45R+/mm² vs 3 CD45R+/mm²) 7 days after the first injection at D12.

Beta radiation could explain this recruitment and efficacy in in vivo model since after a fractionated D12-D19 treatment is associated with a significative increase of the median survival time to 56 days versus 20 days for control mice. We have 50% of long-term survivors (> 100 days). After the rechallenge, we observe a slowing down of Lab1 development. In n=3 mice per group MST reaches 27 days versus 19,5 days for control.

Conclusion:

To conclude, the fractionated day 12 – day 19 treatment is effective in a human glioblastoma model. The better description and understanding of LNC¹⁸⁸Re-SSS effects on tumor environment will lead to the validation of this innovative glioblastoma therapeutical strategy and the establishment of the first phasel clinical trial: (1) Single CED in recurrence situation, (2) Dosimetric evaluation (SPECT acquisition) and (3) Biological parameters analyses.

Starch based microparticles radiolabelling with ^{99m}Tc and ¹⁸⁸Re for diagnostic and therapy of Hepatocellular carcinoma

E.Verger^{1,4,8}, A. Cikankowitz^{1,8}, A. Bouvier², N. Lepareur^{5,8}, J. Benoit^{1,8}, J. Deloye⁶, C. Aubé², O. Couturier^{1,3,8}, F. Lacoeuille^{1,3,7,8}, R. Hustinx⁴, F. Hindré^{1,7,8}.

¹INSERM U1066 MINT (Micro et Nanomédecines Biomimétiques), University of Angers, FRANCE ; ²Radiology department, CHU d'Angers, University of Angers, FRANCE ; ³Nuclear medicine department, CHU d'Angers, University of Angers, FRANCE ; ⁴Nuclear medicine department, CHU de Liège, University of Liège, BELGIUM ; ⁵Centre Régional de Lutte Contre le Cancer (CRLCC) Eugène Marquis, Rennes, FRANCE ; ⁶Cyclopharma Laboratoires, Saint-Beauzire, FRANCE ; ⁷PRIMEX (Plateforme de Radiobiologie et d'IMagerie EXpérimentale), University of Angers, FRANCE ; ⁸Labex IRON, Nantes-Angers, FRANCE.

The HepatoCellular Carcinoma (HCC) is the 6th most common cancer worldwide. There are few curative treatments, (ablation, resection and transplantation) and most of the patients cannot benefit from it because of underlying liver diseases. Among recent developments in palliative treatment, Selective Internal Radiation Therapy (SIRT) which efficacy has been assessed but is still in experimental stage, is currently proposed for patients in intermediate stage HCC who are not eligible for the standard therapy¹: Transarterial chemoembolization (TACE). SIRT consists of the intra-arterial injection of ⁹⁰Y-microspheres which requires a pre-therapeutic angiography done with ^{99m}Tc-macroaggregated albumin (MMA) to evaluate the hepatopulmonary shunt. However MMA and ⁹⁰Y-microspheres are not similar in shape and size, and these differences can lead to dosimetry approximation.

In this context Starch-Based Microparticles (SBMP), first developed in our laboratory (UMR-S1066) for lung scintigraphy by the optimization of ready-to-use ^{99m}Tc-radiolabelling kit^{2,3}, are potential good vectors for SIRT of HCC by their characteristics (size, radioisotope complexation). As technetium-99m (^{99m}Tc) a pure gamma-emitter and rhenium-188 (¹⁸⁸Re) a beta and gamma emitter have similar physical chemical properties, both of them can label the SBMP, with the advantage of a unique system for diagnosis purpose and therapy of HCC. The aim of this work is to develop and optimize a ready-to-use kit allowing the fast and stable labeling of SMBP with ¹⁸⁸Re.

SBMP are obtained by sodium metaperiodate (NaIO₄) oxidization of native starch particles to open the glucose cycles, allowing the linkage of a polyamine ligand (cadaverine). This link needs to be stabilized by a reducing step using sodium borohydride (NaBH₄). Different parameters like amout of microparticles, of reducing agent: stannous chloride dihydrate (SnCl₂, 2H₂O), of perrhenate (ReO₄⁻) activity or reaction's volume were changed to optimize the radiolabelling reaction. The efficiency of the radiolabelling is assessed with measure of the radiochemical purity (RCP) by filtration of 1mL of the labeled microparticles on a 5- μ m filter. Also stability studies were performed following the RCP up to 24h.

In comparison with 99m Tc, the 188 Re needs strengthened reducing conditions for a complete complexation onto the SBMP. Reducing agent and amount of microparticles are major influencing factors. At this stage of optimization we obtained a RCP around 90% (\pm 5%) and a 24h stability.

SBMPs show promising characteristic as a single agent for the diagnosis and SIRT therapy of HCC. Biodistribution and efficacy studies are planned on a rabbit VX2 model.

Keywords: SIRT; Hepatocellular carcinoma; Starch-Based Microparticles; rhenium-188; technetium-99m;

Bibliographie :

3. Lacoeuille, F. et al. Biomaterials 32, 7999-8009 (2011).

^{1.} Forner, A., Gilabert, M., Bruix, J. & Raoul, J.-L. Nature Reviews Clinical Oncology (2014) doi:10.1038/nrclinonc.2014.122.

^{2.} Lacoeuille, F. et al. European journal of nuclear medicine and molecular imaging **37**, 146–55 (2010).

Rhenium-tricarbonyl with a new tripodal N₂O ligand: from structural investigations to a therapeutic radiopharmaceutical

Romain Echeynne¹, Sihem Guizani², Mariusz Wolff³, Eric Benoist¹, Nicolas Lepareur⁴

1- Université Paul Sabatier; Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, SPCMIB, UMR CNRS 5068, 31062 Toulouse, France

2-National Center of Sciences and Nuclear Technology, Radiopharmaceutical Unit, Sidi thabet 2020, Tunisia

3- University of Silesia, Department of Crystallography, Institute of Chemistry, 40-006 Katowice, Poland

4- Centre Eugene Marquis, Nuclear Medicine Department, INSERM UMR-S 991, 35042, Rennes, France

Introduction:

Selective localisation or destruction of tumour cells by means of a radiopharmaceutical is a simple and attractive concept, based on the recognition properties of biomolecules – in particular small peptides – towards tumour cells. The challenge is to design effective and stable radiotracers based on a suitable radioisotope, a bifunctional chelate and a biomolecule, appropriate to target the organ of choice. Among radioisotopes for targeted therapeutic applications, rhenium-188 is very promising, thanks to its suitable properties (β ⁻ emitter, E_{max} = 2.12 MeV, t_{1/2} = 17 h), and to the fact that it is a homologous element to technetium-99m, the radioelement of choice in nuclear medicine. Complexes based on the Re(I) tricarbonyl core and a "click-to-chelate" approach, recently developed by Schibli *et al.*, have brought new opportunities for the preparation of radiopharmaceuticals. The aim of this study was to design a new tripodal N₂O ligand, based on a triazolyl moiety, and to evaluate its ability to chelate rhenium-188 as well as the possibility to conjugate a peptide.

Materials and methods:

Tripodal N₂O bifunctional chelating ligands (BCLs) have been synthesised through a coppercatalysed cycloaddition between an alcyne and an azide. Rhenium complexes have been prepared with "cold" ^{185/187}Re, using these BCLs. They were subsequently fully characterised (NMR, IR, elemental analysis, MS, X-Rays and cyclic voltammetry). The analogous ^{99m}Tc and ¹⁸⁸Re have been prepared, using Isolink kits for ^{99m}Tc and a modified procedure for ¹⁸⁸Re, and their HPLC and TLC profiles were compared with the fully characterised "cold" complexes.

Results:

BCLs with different functionnalisations (ester, amine and nitro) have been prepared and their synthesis optimised. Rhenium complexes have been prepared and characterised. The feasibility of the labelling with rhenium-188 has been demonstrated. Reaction conditions are however still to be optimised.

Conclusions:

We are currently trying to link a peptide to our BCL, to target hepatocellular carcinoma metastases. Once the radiolabelling of the biomolecule will be done and its stability assessed, its biological evaluation is planned.

Interdisciplinary consortium collaboration for the development of radiopharmaceutical approach for effective diagnostics and therapy of prostate cancer in Russia

- K. German^{1,2}, O. Vlasova³, V. Petriev⁴, V. Skvortsov⁴, G. Kodina⁵, A. Maruk⁵, N. Airapetova⁶, N. Epshtein⁶, N. Nerozin³, A. Safonov^{1,2}, V. Lebedev¹, Ya. Obruchnikova^{1,2}, Yu. Shevko³
 - 1 A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow
 - 2 Medical Institute Reaviz, Moscow branch, Russia
 - 3 A. I. Leipunsky Institute for Physics and Power Engineering, Obninsk, Russia
 - 4 Medical Radiological Research Center of Ministry of Health of Russia, Obninsk, Russia
 - 5 Burnazyan Federal Medical Biological Center of FMBA, Moscow, Russia
 - 6 National Research Nuclear University MEPhI, Obninsk, Russia

Effective diagnostics and therapy of prostate cancer is an important issue for Russia due to constantly increasing number of decease cases herein. Rational development of new radiopharmaceuticals for the management of advanced and metastatic prostate cancer requires an improved cooperation of the organization thus involved. For this reason an interdisciplinary consortium collaboration for the development of radiopharmaceutical approach is established with principle aim to improve the situation within the 3 coming years. The PSMA markers are focus selection of the project due to their ability not only for cancer but also for methastatic object detection. Draw investigation indicated that the prostate-specific membrane antigen (PSMA) based markers could be the key substrate matter for the solution of the problem. PSMA is highly expressed in prostate cancer, and small-molecule radiopharmaceuticals targeting PSMA helps to rapidly detect the location and extent of disease. Comparative study provided with a selected row of substrates including several MIP derivatives and some others. Synthetic procedures were optimized for better yields, purities and prices.

Production of Tc-99m (for radiodiagnostics) and Re-188 (for radiotherapy) isotopes were improved with optimized generator design aimed to high specific activity production.

Special educational interdisciplinary program for specialist training for technetium application to prostate radiodiagnostics is elaborated.

The development of new radiopharmaceuticals and generators for the management of advanced prostate cancer will help to improve the treatment of this disease in Russia.

Interdisciplinary consortium collaboration for the development of radiopharmaceutical approach for effective diagnostics and therapy of prostate cancer in Russia

K. German^{1,2}, O. Vlasova³, V. Petriev⁴, V. Skvortsov⁴, G. Kodina⁵, A. Maruk⁵, N. Airapetova⁶, N. Epshtein⁶, N. Nerozin³, A. Safonov^{1,2}, V. Lebedev¹, Ya. Obruchnikova^{1,2}, Yu. Shevko³

- 1 A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow
- 2 Medical Institute Reaviz, Moscow branch, Russia
- 3 A. I. Leipunsky Institute for Physics and Power Engineering, Obninsk, Russia
- 4 Medical Radiological Research Center of Ministry of Health of Russia, Obninsk, Russia
- 5 Burnazyan Federal Medical Biological Center of FMBA, Moscow, Russia
- 6 National Research Nuclear University MEPhI, Obninsk, Russia

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow

Technetium chemistry laboratory

- K. German, Project CEO, Head of Tc laboratory, PhD , Doc., Prof.
- A. Safonov, Deputy head of Tc laboratory, PhD
- Ya. Obruchnikova, PhD
- V. Tregubova, PhD student
 - M. Glazkova

Innovation department

• V. Lebedev, General manager for innovations

Laboratory of new physical-chemical problems

- A. Tsivadze, Director of IPCE RAS, Academician
- A. Filyanin, liquid extraction group, PhD
- V. Tarasov, NMR analysis, Professor

- Laboratory of substance radiation chemistry B. Ershov, Head of laboratory, corr. member
- RAS, Professor
- E. Abkhalimov, PhD
 - R. Solovov, PhD student

Laboratory of interphase boundaries and electocatalysis

V. Andreev, Head of laboratory, Professor

Laboratory of radioactive material analysis

M. Grigoriev, Head of laboratory, Professor

 The main purpose of the Institute is to carry out fundamental and applied scientific research in various fields of physical chemistry, electrochemistry, chemical resistance of materials, radiochemistry and radiation chemistry.

A. I. Leipunsky Institute for Physics and Power Engineering, Obninsk, Russia

- O. Vlasova, N. Nerozin, Yu. Shevko, I. Zhuk
- multidisciplinary scientific organization, conducting complex investigations of physical and technical problems of nuclear science and technology.

Medical Radiological Research Center of Ministry of Health of Russia, Obninsk, Russia

- V. Skvortsov, V. Petriev
- Mission: Development of concepts, regulatory documents related to radiation safety of a human and the environment, health security and reduction of socioeconomic prejudice caused by radiation.
- The Institute was founded in 1962 to develop and improve methods of radiation diagnostics and radiation therapy, prevention and treatment of radiation injury, the study of the biological and medical effects of ionizing radiation.

National Research Nuclear University MEPhl, Obninsk, Russia

- N. Airapetova, N. Epshtein
- Development of analytical procedures for quality control of radiopharmaceuticals and staff training
- Mission: to generate, disseminate the use and to preserve scientific knowledge aiming to address global challenges of the XXI century, as well as to provide innovative transformations in Russia accompanying development of the country competitiveness in the global energy and nonenergy high-tech markets.

Center of FMBA, Moscow, Russia

- G. Kodina, PhD, Department head
- A. Maruk, PhD, Laboratory Head
- Production of Tc-99m (for radiodiagnostics) and Re-188 (for radiotherapy) isotopes and preclinical medicine tests

• Fundamental and applied research in the field of radiation medicine, radiobiology and radiation protection;

- Research in the field of biomedical technologies, radiopharmacy;
- Development of new radiation technologies (including photon and neutron capture therapy);

• Research in the field of chemical and radiation safety in the use of technology for special applications.

Medical Institute Reaviz, Moscow branch, Russia

- K. German, Chair of Natural science, Professor
- A. Safonov, docent, PhD
- Ya. Obruchnikova, assistant prof., PhD
- V. Tregubova, PhD student

Training of medical staff for modern medicine

"The main aim of Reaviz is the training of health care staff, of young people who should become highly professional physicians in the nearest future. The most important quality for these professionals should be the integration of the greatest responsibility and the inner freedom of this profession, of scientific research and practical achievements." Rector of Samara Medical Institute "REAVIZ", Doctor of Medical Science, professor Nikolay A. Lyssov

What we intend to obtain

In the course of this project should be developed

- production technologies of ^{99m}Tc generators and highvalue ¹⁸⁸Re generators with reduced transport index,
- technologies of ¹⁸⁸Re concentration, development of analytical methods for detection of radioactive and chemical impurities in the ¹⁸⁸Re preparation,
- quality assurance of ^{99m}Tc and ¹⁸⁸Re generator eluates in accordance with the requirements of potential radiopharmaceuticals based on them, specifically binds to the receptor tissue of prostate cancer.

What we already have for radionuclide imaging

- 2-18F-fluoro-2-deoxy-D-glucose (FDG);
- ¹¹¹In-7E11 antibody (ProstaScint);
- ¹⁸F-fluorodihydrotestosterone (¹⁸F-FDHT);
- radioacetate analogs;
- radiocholine analogs;
- anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid (anti-[¹⁸F]FACBC)

Production of Tc-99m (for radiodiagnostics) and Re-188 (for radiotherapy) isotopes were improved with optimized generator design aimed to high specific activity production.

- Potential consumer of radiopharmaceuticals (RPh): medical institutions at various levels, cancer medical centers, cancer clinics, licensed to work with sources of ionizing radiation and equipped with diagnostic equipment, SPECT or PET.
- Objects of RPh application: patients with the disease of prostate cancer (about 30 thousand pers. / year).
- Over the past few years in Russia approximately 40,000 new cases of prostate cancer per year were recorded, and only for 30% of them brachytherapy is performed with an efficiency of 75%

Effective diagnostics and therapy of prostate cancer is an important issue for Russia due to constantly increasing number of decease cases herein.

Rational development of new radiopharmaceuticals for the management of advanced and metastatic prostate cancer requires an improved cooperation of the organization thus involved. For this reason an interdisciplinary consortium collaboration for the development of radiopharmaceutical approach is established with principle aim to improve the situation within the 3 coming years.

The development of new radiopharmaceuticals and generators for the management of advanced prostate cancer will help to improve the treatment of this disease in Russia.

- Special educational interdisciplinary program for specialist training for technetium application to prostate radiodiagnostics is elaborated.
- The development of new radiopharmaceuticals and generators for the management of advanced prostate cancer will help to improve the treatment of this disease in Russia.
- Innovative character of this project requires special attention on staff training.
- New technologies worked out by Igor Zhuk and Yury Shevko (A.I. Leipunsky Institute for Physics and Power Engineering, Obninsk, Russian Federation) are to be used in this project

A new approach to form a competent team of specialists

What makes a good specialist?

Many issues written by leading scientists state that the **expert is endowed mainly the following qualities,** namely:

1) has a degree in the subject area;

2) has a positive experience with previous

expertise in the subject area;

3) must work at least 10 years;

4) objective;

5) must constantly improve their knowledge and so on.

Is it true?

In our opinion, these qualities are of a **formal nature** and **do not meet the full competencies** that have been proposed by the European community as one of the core competences for professionals of the twenty-first century.

Five basic EU competencies were chosen as the most necessary for the Expert of the XXI century :

- **1.** Communication in the mother tongue.
- 2. Communication in foreign languages.
- **3.** Mathematics skills and core competencies (skills) in science and technology.
- 4. Information technology competence.
- The ability to find new information and produce new knowledge for expert's professional area.

Ask yourself: "Are you sure that You have all this basic competencies?"

Or Do You think that the expert and specialist of technetium application to prostate radiodiagnostics do not need this competencies?

Unfortunately, it is not a simple question. Please, think about quantity of the wrong diagnosis in different countries The PSMA markers are focus selection of the project due to their ability not only for cancer but also for methastatic object detection. Draw investigation indicated that the prostate-specific membrane antigen (PSMA) based markers could be the key substrate matter for the solution of the problem. PSMA is highly expressed in prostate cancer, and small-molecule radiopharma-ceuticals targeting PSMA helps to rapidly detect the location and extent of disease. Comparative study provided with a selected row of substrates including several MIP derivatives and some others. Synthetic procedures were optimized for better yields, purities and prices.

Expert assessments in Russia

 Expert assessments are applied with success in various fields of human activity and find their reflection in the works of such Russian scientists as Azgaldov G.G., Beshelev S.D., Evlanov L.G., Gurvich F.G., Larichev O.I., Litvak B.G., Novikov, D. A., Orlov, A.I., Raichman I.P., Sidelnikov Y.V., and many other authors involved in problem of expert assessments.

24

Evlanov L.G. thought that the expert has the following requirements:

- 1) Competence;
- 2) Creativity;
- 3) Respect to the examination;
- 4) Conformism;
- 5) Constructive thinking;
- 6) Teamwork;
- 7) Self-criticism.

In the work of Raichman A.P. and Azgldov G.G. the quality of the expert has the following requirements:

- 1) Competence;
- 2) Interest;
- 3) Efficiency;
- 4) Objectivity.

The competence of the expert should be applied to the object quality assessment (professional competence) and methodology (qualitative competence).

25

Data about the authors

- Zhuk Igor Aleksandrovich, PHD,
 - Shevko Yuri Viktorovich, e-mail: <u>zz-38@yandex.ru</u>
- (A. I. Leipunsky Institute for Physics and Power Engineering, Obninsk, Russia)

Influence of oxygen isotopes on the NMR parameters of the pertechnetate anion TcO₄⁻. Use of technetium-99g in PET nuclear chemistry technology: application of ^{99g}Tc-NMR for analysis of O-18 content in water

Valery Tarasov^{1,2}, Gayane Kirakosyan^{1,2}, Konstantin German^{2,3}

1 – Kuranakov Institute of General and Inorganic Chemistry RAS 2 – Frumkin Institute of Physical Chemistry and Electrochemistry RAS 3 – Medical Institute Reaviz

The new method for ¹⁷O and ¹⁸O analysis is proposed being based on addition of isotopically saturated water samples to solid M⁹⁹TcO₄ (M = NH₄ or Na) followed by quantification of ⁹⁹Tc-NMR spectrum fine structure in the coordination sphere of pertechnetate. The isotopic shifts ^{16/17} Δ , ^{16/18} Δ NMR ⁹⁹Tc and the constants of spin-spin interaction of isotopomers: Tc¹⁶O₂¹⁷O₂⁻, Tc¹⁶O₃¹⁸O⁻,Tc¹⁶O₃¹⁷O⁻, Tc¹⁶O₂¹⁷O¹⁸O⁻, Tc¹⁶O₂¹⁸O₂⁻ are determined. In the solution of ammonium pertechnetate for the anions Tc¹⁶O₃¹⁸O and Tc¹⁶O₃¹⁷O⁻ at the temperature interval 278-333K the isotopic shift is given by liner dependencies ^{16/18} Δ = -0.616 + 6.45×10⁻⁴T (ppm) and ^{16/17} Δ = -0.302 + 2.67× 10⁻⁴ T (ppm), correspondingly In the solution of sodium pertechnetate for the isotopic shift ¹ Δ (^{16/17}O) is nonlinearly depending on the temperature due to the equilibrium of contact and hydrate-separated ionic pairs.

 $[^{18}O]H_2O$ 2- $[^{18}F]$ fluoro-2-deoxi-D-glucose (^{18}FDG)

Most popular Radiopharmaceutical for PET

Very important consummation of [¹⁸O]H₂O in medical centers

It should be recycled

- ${}^{18}F \text{decay} \sim 110 \text{ min} {}^{18}O(p,n){}^{18}F$,
- Mass-spectroscopic test for ${}^{12}C^{18}O^{16}O$ and ${}^{12}C^{16}O_2$

Alternative analytical procedure is being developed in my lab Use of Mn-NMR and Tc-99g-NMR

Field 7.04Tl at Bruker AVANCE-300.

Oxygen isotopic exchange in MnO_4^- or TcO_4^- vchange the spectral splitting shape

Isotope shifts from ¹⁶O to ¹⁸O is

0,59 ppm for ⁵⁵Mn and

```
0,43 ppm for <sup>99</sup>Tc [1].
```

 $(>98\% [^{18}O]H_2O)$

Crystaline NH_4TcO_4 , $NaTcO_4$, $KMnO_4$ added to form 0.25-0.3 M.

¹⁸O in initial water was >95% H₂¹⁸O, and after irradiation for ¹⁸F preparation it was 72% H₂¹⁸O (Fig).

ISOTOPEOMERES NUMBER Z IS

Z = (n+s-1)!/n!(s-1)! = 15, где n=4-

$$\begin{split} & \mbox{\boldmath${\rm C}$} = n! (r_{16})^{\mbox{${\rm a}$}} \, (r_{17})^{\mbox{${\rm b}$}} \, (r_{18})^{\mbox{${\rm c}$}} / (a!b!c!) \ \mbox{WHERE} \ \ r_{16}, \, r_{17} \ \mbox{AND} \ r_{18} \\ -, \, (r_{16} + r_{17} + r_{18}) = 1; \end{split}$$

a+b+c=4.

 $MO_4^{-} + H_2^{-18}O = M^{16}O_a^{-17}O_b^{-18}O_c^{-},$

 99 Tc NMR (67.55MHz) spectrum of an equilibrated 0.2 M NaTcO₄ solution in recycled water containing ~72% H₂¹⁸O at 298K.

КССВ ⁹⁹Tc $-^{17}$ O составляет 130 Hz, КССВ ⁵⁵Mn $-^{17}$ O =16.5 Hz.

Tc usage provides with more precise data

1. В.П.Тарасов, Г.А.Киракосян, К.Э.Герман // Химическая физика. (2014). Т.33 (в печати)

TECHNETIUM AND RHENIUM SULFIDES – FORMATION KINETICS, STRUCTURE AND PROPERTIES

K.E. German^{1,2}, A.V. Safonov^{1,2}, A.A. Shiryaev¹, Ya. A. Obruchnikova^{1,2,3}, V.A. Ilin^{1,2}, V.P. Tarasov¹,

A. V. Afanasiev², V.E. Tregubova^{1,2}, S.N. Kalmykov^{1,4}

1 – Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow, Russia

2 – Moscow Medical Institute REAVIZ, Moscow Russia

3 – Mendeleev Russian Chemical Technology University, Moscow, Russia

4 – Lomonosov Moscow State University, Moscow, Russia

Keywords: technetium-99, rhenium, sulphide, environmental chemistry,

Abstract

Sulfur is an element of high environmental importance, especially for understanding of many different metals behavior. Tc - S system is not an exclusion in this respect. The sulfur, its different compounds and their derivatives are often present in the natural waters, minerals and rocks and being leached by dissolution mechanism or microbiological transformation affect drastically the Tc environmental dissipation or concentrating routs. For better understanding the Tc behavior in the different natural environments we need quantitative data for the composition and properties of Tc sulfide species that could be formed. This work is aimed to analyze the progress in the field of Tc-S system with the principle focus to its formation kinetics and size speciation.

Historical data and its reconsideration.

So-called technetium heptasulfide was among the first synthesized Tc compounds [1-2] because it was considered as a convenient route for Tc separation from aqueous solutions. Already in the first works its composition was established as Tc_2S_7 , thus supposing that Tc is present in its higher oxidation state. This experimental data were sufficiently precise although rather surprising in view of Tc(VII) redox potentials being in contradiction with those of S²⁻. Spitsyn and Kuzina in IPCAS, Moscow, as well confirmed this composition [3]. Meanwhile the crystallographic characterization of technetium heptasulfide was not possible as the precipitate was completely X-ray amorphous. All the attempts of recrystallization in solution failed and no explanation of the composition and the structure was available for more than 45 years [4].

Lee and Bondietti in 1979-83 studied the effects of Fe(II) and of S^{2-} on Tc solubility having found out that, in the absence of S^{2-} , the pertechnetate was reduced by Fe(II) and Tc(IV) hydroxide precipitated from the solution [5-6]. Meanwhile, in the presence of S^{2-} , Tc₂S₇ precipitated, and the authors concluded that Tc(VII) was not reduced with this ion [6]. When both Fe(II) and S²⁻ were present, Tc was reduced and coprecipitated with a FeS phase as a carrier.

Amorphous Tc(IV) sulfide was also described by Boyd having been prepared while heating Tc_2S_7 in the absence of O_2 [7]. Crystalline TcS_2 in turn was prepared by chemical transport reaction along a temperature gradient (1423-1353 K) in a sealed tube. According to [8] the presence halogen as a carrier gas, improved transport efficiency [8]. This TcS_2 formed triclinic crystals.

Sodium thiosulphate or thioacetamide were shown being able to produce Tc_2S_7 in treatment of acidic Tc(VII) solutions [9, 10].

Important Tc accumulation by some sulfide minerals was observed [11-13], the most effective sorbents being the sulfides with higher solubility or possessing reducing metal ions. The mechanism for Tc sorption differed for different minerals [13].

The Tc_2S_7 solubility was investigated based on the measurements of Tc concentration in the aqueous solutions equilibrated with the previously precipitated and washed technetium

sulfide [13]. No reasonable value was possible to establish because of its complicated hydrolyses behavior under the applied conditions as described in [3, 13] and references therein.

Formation kinetics was studied spectrophotometrically [14] providing with the data on the Tc(VII) reaction with sulfide reaction while the further colloidal particle size speciation studies supported with ultramicrocentrifuge technics [15-16] provided with the reliable information on Tc concentration dependences.

The TcO₄⁻ and S₂⁻ solutions have important absorbances in the UV region, being completely transparent in the region of visible light. In course of the reaction of the pertechnetate with S₂⁻, the brown color of the solution develops, the corresponding spectrum being attributed to the technetium sulfide formation [14]. For the kinetic studies in [14] the λ = 450 nm was chosen (Fig.1 – 2). Some kinetic curves registered for solutions with different with initial [TcO₄⁻]₀, [Na₂S] and pH are illustrated at Fig. 2-4.

Fig.1. Typical spectrum for technetium sulfide formed after exposition for t = 4560 s, in the solution with initial $[TcO_4^-]_0 = 1*10^4$ M, $[Na_2S] = 0,27$ M and pH = 11.8.

Fig. 2. Kinetic curves registered at 450 nm for the reaction of pertechnetate with sodium sulfide: $[TcO_4]_0 = (0,5-2)*10^4 M$, $[Na_2S] = 0.27 M$, pH = 11.8.

As the pH of the solution could be affected by hydrolyses and sulfide oxidation, some tests were conducted in buffer solutions [14]. In all cases the pH was kept within pH = 8 - 12 region as lover pH are favorable for hydrolyses of sulfide and hydrosulfide ions and conversion of elementary sulfur formed in the reaction into disulfide ion. The typical kinetics for phosphate buffers is demonstrated in the Fig. 3.

Three stages are characteristic for this reaction, the first one being induction period (from 13500 and up to 35000 s (= 9.7 h) dependent on the pH) its duration being dependent on the initial accumulation of disulfide ion, the second – intermediate reduction of pertechnetate to mixed Tc oxosulfide(V,IV) (14000 – 50000 s dependent on the pH) and the third – final formation of trinuclear Tc disulfide [14-15]. The colloidal solutions of the technetium sulfide thus formed were rather stable. Similar solutions were described by T. Sekine and co-authers in [16]. The composition of the precipitate separated from this solution by 10 kD ultramirocentrifuge membranes was determined by chemical analyses and by Rutherford back scattering (CENBG Bordeaux-Gradingan in collaboration with Lab. Pierre Sue, Saclay) and was equal to Tc:S = 2 : 6,73(25) [15]. This precipitate was analyzed by EXAFS studies at ESRF, Grenoble the results (see Fig. 4.) had confirmed its identity with the technetium sulfide studied by different authors [17-18].

The rate constant K_1 for the initial step of Tc(VII) reduction with sulfide (producing Tc(IV) and polysulfide ions) was determined as $7.0^{\cdot}10^{-6}$ ce κ^{-1} while K_2 constant for the final formation of technetium sulfide (in fact trinuclear technetium(IV) polysulfide) as shown in [17]) was $2.0*10^{-4}$ ce κ^{-1} , being by 2 orders of magnitude higher than K_1 .

Fig. 3. Technetium sulfide formation kinetics (registered at 450 nm) in the reaction of pertechnetate with sodium sulfide at constant pH provided with buffer solution: $[TcO_4^-]_0 = 1.57*10^{-4} M$, $[Na_2S] = 0.09 M$, buffer solution $[HPO_4^{-2}]/[H_2PO_4^-] = 3/1$, $[PO_4]_{\Sigma} = 0,19 M$, pH = 8.2

Fig.4. Tc K-edge EXAFS spectra (left) and their Fourier transforms (right) of the Tc sulfide colloidal solution corresponding to the reaction of pertechnetate with sodium sulfide for $[TcO_4]_0 =$ $2,0*10^{-4} M, [Na_2S] = 0,27 M, pH = 11,8.$

The influence of initial technetium(VII) concentration (within the range of $(0,57-2,66)*10^{-4}$ M KTcO₄ and constant [Na₂S] = 0.3M) on the reaction rate of Tc and sulfide was determined from the data shown in Fig. 2. The rate constant was practically lineary dependent on the technetium concentration within the range $(0,57-2,66)*10^{-4}$ M.

The kinetics data recalculated from concentration to conversion degree axes are presented at the Fig5. Under the listed conditions the reaction of Tc(VII) with sulfide was also characterized with induction period and the kinetics dependent on the [Na₂S] in the solution and the pH of the solution. Reaction of NaTcO₄ with 0,3M Na₂S was completed within 2000 s, the further development of the precipitate was due to aging effects. The S/Tc ratio in the sediment was obtained by chemical analyses as 3.36(7) on a macroammount of the precipitate and confirmed by RBS (Fig.6) [15].

. Fig.5. Reaction kinetics of NaTcO₄ with 0,3M Na₂S , pH=11.8, t=20°C [15]

Fig. 6. RBS determination of S/Tc ratio in technetium sulfide [10]

Particle growing processes were investigated for technetium(VII) sulfide (Tc_2S_7) colloids produced in a mixture of Na_2S and TcO_4^- solutions by laser-induced photoacoustic spectroscopy (LPAS). Analysis of the LPAS signal intensities indicated that the particle size increased in the solution with an increase of standing time, while the number of particles remained constant. It was revealed that the size of colloid particles increased by deposition of Tc_2S_7 on the particle surfaces, not by coagulation of colloid particles. The formation mechanism and growing process of the colloids are discussed based on the LaMer model, which deals with nucleation processes.

15000

In the aging process of Tc-S colloid system, the size of colloid particles was shown to increase by deposition of Tc sulfide on the particle surface, not by coagulation of the particles [11].

The final ideas for explanation of Tc - S system became possible only based on EXAFS studies [12]. It was demonstrated that -S-S- disulfide ligands are present in the structure thus explaining the reduction mechanism for Tc(VII) to Tc(IV) with no notable change in Tc:S stoichiometric ratio that remained close to the value within the interval of 3,3-3,5.

*Tc*₃*S*₁₃ for technetium sulfide acc. to EXAFS studies[17]

Fig.8. Concentration of free Tc species as fractionized with separation of ionic or nanocolloidal particles with 5 kD "Sartorius" ultramicrocentrifuge tubes [15]

At the same time the presence of $S_2^{2^-}$ ligand in the compound explains some other properties that was not well understood before. The determination of the concentration of free Tc species as fractionized with separation of ionic or nanocolloidal particles with 5 kD "Sartorius" ultramicrocentrifuge tubes [15] gave evidence on the Tc_3S_{10} nanosulfide formation (Fig.3) similar to that observed in [17].

The stability of Tc_3S_{10} in the resulting solution was dependent of the S^{2-} concentration in it. When higher than 0.06M Na₂S, further grouth of Ts sulfide particles occurred for $\tau \ge 150$ h similar to observations made in [11]. For $[Na_2S] \le 0.04$ M, the Tc_3S_{10} was reoxidized by present air to Tc(VII) within 175-200 hours thus being resolubilized.

Fig. 10. The scheme of Tc reaction with sulfide describing precipitation and ultracentrifugal speciation tests the follows the ideas drawn based on the results of Lukens et all., Sekine et all and German et all [15 - 17].

The determination of the free Tc species concentration with separation of ionic or nanocolloidal particles with 5 kD "Sartorius" ultramicrocentrifuge tubes [10] (Fig. 4) gave evidence on the Tc_3S_{10+x} nanosulfide formation similar to that observed in [12]. The equation for the Tc sulfide solubility based on these figures was evaluated (Fig.9). We carried out additional microcentrifuge size speciation in course of the reaction of Tc(VII) and Re(VII) with sulfide and followed it with size speciation of generated particles in the solution by SAXS at specialized small angle diffractometer SAXSess (Anton Paar (Austia), CuK α (1.54 A), transmission analises after collimation correction mode, sealed glass capillaries, registration with ImagingPlate) (Fig.11).

А

В

Fig.11. SAXS spectra of two Re sulfide samples differing in the order of reagent mixing (a – Na sulfide to Na perrhenate and b – Na perrhenate to Na sulfide), $[NaReO_4] = 10^{-4}M$, $[Na_2S] = 0.3 M$.

Based on $\text{Log}(I) = f(s^2)$ plots, $s = 4\pi \sin(\Theta)/\lambda$ for the aged samples two types of species were observed in Re sulfide colloidal solution by SAXS. Small particles were monodisperse and quite isotropic with Rg = 0.31 - 0.45 nm. Large particles were disc shaped with 40 nm in diameter and 5 nm height.

Both methods supported induction period and kinetic dependent on the $[Na_2S]$ in the solution and the order of mixing the reagents. Based on the similarity of chemical behavior we suggest similarity in composition of technetium and rhenium species obtaind in the identical conditions.

The stability of M_3S_{10} (M = Tc, Re) in the resulting solution was dependent of the S²⁻ concentration in it. When higher than 0.06M Na₂S, further grouth of Tc and Re sulfide particles occurred for $\tau \ge 150$ h similar to observations made in [16]. For [Na₂S] ≤ 0.04 M, the M_3S_{10} was reoxidized by present air to Tc(VII) within 175-200 hours thus being resolubilized.

The determination of the free Tc and Re species concentration with separation of ionic or nanocolloidal particles with 5 kD "Sartorius" ultramicrocentrifuge tubes gave evidence on the M_3S_{10} nanosulfide formation similar to that observed in [17]. The equation for the Tc sulfide solubility based on these figures was evaluated. The stoichiometry of technetium sulfide precipitated from aqueous solutions by sulfide action was recently confirmed by Liu, Tery and Jurisson in [18]. Some important data on the FeS effect onto Tc environmental behavior was reported by the same

authors in [19]. Although the proposed technetium dioxide formula applied in [19] for the processing of the EXAFS data differs in the number of water molecule bounded to the TcO_2 from the recommended value (that is 1.6 H₂O according to [4], and very similar to 1.5 H₂O observed earlier for Re(IV) hydroxide), the results of [18,19] support in principle the evidence for the formulation of common technetium sulfide established by Lukens and co-workers [17]. Also the results of [20] are not in contradiction with [17]. Therefore we consider that the latter works provide a correct and important description of technetium sulfide as a complex compound formed from water solutions by reaction of pertechnetate with sulfide source while the intermediate Tc oxosulfides described in [21] are completely converted to sulfides in excess of S^{2-} ions.

Acknowledgments:

The work was carried out in part as the statutory work of the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS within the grant RFBR 14-03-00067.

References.

- 1. Cobble, J. W., Nelson, C. M., Parker, G. W., et all., J. Am. Chem. Soc., 74 (1952) 1852.
- 2. Rulfs, C. L., Meinke, W. W. J. Am. Chem.Soc., 74 (1952) 235-236.
- 3. Spitsyn, V. I., Kuzina, A. F., "Investigation of weighable amounts of technetium", *Proc. Acad. Sci. USSR Chem. Sect.*, **124** (1959) 103–105.
- Rard J.A., Rard M.H., Anderegy G., Wanner H. // "Chemical Termodynamic of Technetium.", by Ed. Sandino M.C.A., Osthls E., OECD NEA, Data Bank, Issy-les-Moulineaux, France, 1999
- 5. Bondietti, E.A., Francis, C.W. Science, 203 (1979) 1337-1340.
- 6. Lee, S. Y., Bondietti, E. A., In: "Sci. Basis Nucl. Waste Manage. VI, held Nov. 1982 in Boston", (Brookins, D. G., ed.), New York: North-Holland, 1983, pp. 315–322.
- 7. Boyd, G. E., "Technetium and promethium", J. Chem. Educ., 36 (1959) 3-14.
- 8. Wildervanck, J. C., Jellinek, F., "The dichalcogenides of technetium and rhenium", J. Less-Common Met., 24 (1971) 73–81.
- 9. Eckelman, W. C., Levenson, S. M., "Radiopharmaceuticals labeled with technetium", Int. J. Appl. Radiat. Isot., 28 (1977) 67–82.
- 10. Anders, E., The radiochemistry of technetium, Washington D.C.: Department of Commerce, 1960, 50 p.,
- 11. Winkler A., Bruhl H., Trapp, Ch., Bock W.D. Radiochim. acta , 44/45 (1988), 183-186.
- K.E. German, V.F. Peretrukhin, L.I. Belyaeva, O.V.Kuzina. In: "Technetium and Rhenium Chemistry and Nuclear Medicine 4, (Bressanone-Bolzano-Italy, Sept. 12-14, 1994, (Nicolini M., Bandoli G., Mazzi U.- Eds.) SGEditoriali, pp. 93- 97
- 13. S.El-Waer, K. E.German, V. F.Peretrukhin. J. Radioanal. Nucl. Chem., 157 (1992) 3-14.
- 14. M. Simonoff, K. E. Guerman, G. Simonoff. In: Abstracts of the 2nd Japanese-Russian Seminar on Technetium, Shizuoka, 1999, p. 25
- 15. M. Simonoff, K. E. Guerman, C. Sergeant et all. *Journee Radiochimie 2000*, Gif-sur-Yvette, 28-29 September, 2000, France.
- 16. Y. Saiki, M. Fukuzaki, T. Sekine et all. J. Radioanal. Nucl. Chem. 255 (2003) 101-104.
- 17. W. W. Lukens, J. J. Bucher, D. K. Shuh, N. M. Edelstein. *Environ. Sci. Technol.*, **39** (2005) 8064-8070.
- Y. Liu, J. Terry, S. Jurisson. Pertechnetate immobilization in aqueous media with hydrogen sulfide under anaerobic and aerobic environments. *Radiochimica acta*. 95 (2007) 717 - 727.
- 19. Y. Liu, J. Terry, S. Jurisson. Pertechnetate immobilization with amorphous iron sulfide. *Radiochimica acta.* **96** (2008) 823-833.
- M.J. Wharton, B. Atkins, J.M. Charnock, F.R. Livens, R.A.D. Pattrick, D. Collison. An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS). Applied Geochemistry 15 (2000) 347-354.

International Advisory Committee for 2014 – 2017: T. Gerber, U. Abram, T. Yoshimura, M. Chotkowski, Ph. Moisy, G. Thorogood, F. Poineau, K. German, Ya. Obruchnikova, K. Czhervinski, I. Troshkina, A. Sattelberger, R. Alberto, M.Fattahi

Planning future at the "soire" at Nantes : Marina Glazkova, Frederic Poineau, Gordon Thorogood, Eric Johnson, Konstantin German

Planning future at the "soire" at Nantes : Gordon Thorogood, Eric Johnson, Konstantin German

Russian German in German Blockhouse at La Baule - Le Croisic Bike Excursion Tour

Supramolecular interactions of caffeine molecules with each other, water molecules and oxygen atoms of tetraoxidoanions in the three new different compounds $Me(H_2O)_6[ReO_4]_2$ caffeine (Me = Co, Cd, Mg)

K.E. German^{1,2}, M.N. Glazkova², M.S. Grigoriev¹, Ya.A. Obruchnikova^{1,2}, G.V. Kolesnikov³, Yu.A. Ustynyuk³, F. Poineau⁴, O.S. Kryzhovets²

1 - A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, Leninsky prospekt, Moscow, 119071, Russia. * - *guerman_k@mail.ru*

2 – Medical Institute REAVIZ, Moscow branch, Krasnobogatyrskaya str. 2, Russia

3 – Lomonossov Moscow State University, Leninskie gory, 1, Moscow - Russia

4 – UNLV, Las Vegas, Nevada, USA

The antitumor and radiosensitizing drugs being caffeine derivatives that penetrate easily through blood brain barrier have been developed [1]. They are effective with radiation and chemotherapy treatment for cases of brain tumors. The caffeine derivatives were perspective for preparation of therapeutic agents to be used in a combined therapy for primary and metastatic brain tumors [1]. The mechanism of caffeine interaction was not clear anyhow. The precise structural data for caffeine are necessary for proper understanding of its action but are very limited. To increase the accuracy of the structural date and to simulate the interaction of caffeine with tetraoxidoanion and hydration water molecules the synthesis of new set of compounds of caffeine with three metal hexahydrate perrhenates was carried out from saturated water solutions and the single crystal thus obtained were subjected to X-ray structural study at Bruker KAPPA APEX II diffractometer. All three compounds have similar stocheometry but different coordination types. One type of coordination is represented at the figures for Cd salt.

Supramolecular interactions of caffeine molecules with each other, water molecules and oxygen atoms of tetraoxidoanions as in three different new compounds of $Me(H_2O)_6[ReO_4]_2$ caffeine (Me = Co, Cd, Mg) are analyzed in these study through comparison of their different structures with quantum chemical analyses. The difference in structures is explained by the balance of cations hydration and coordination to perrhenate.

 Vartanyan L.P., Kolesova M.B., Gornaeva G.F., Pustovalov Yu.I. Caffeine derivatives perspective method of the search for anticancer and radiomodifying drugs in combined therapy for malignant brain tumors // Psychopharmacol. Biol. Narcol. — 2005. — Vol. 5, N 4. — P. 1093–1095.

Supramolecular interactions of caffeine molecules with each other, H₂O molecules and O-atoms of tetraoxidoanions in the three new different compounds $Me(H_2O)_6[ReO_4]_2 \cdot caffeine (Me = Co, Cd, Mg)$

K.E. German^{1,2}, M.N. Glazkova², M.S. Grigoriev¹, Ya.A. Obruchnikova^{1,2},
 G.V. Kolesnikov³, Yu.A. Ustynyuk³, F. Poineau⁴, O.S. Kryzhovets²

 1 - A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, Leninsky ave., Moscow, 119071, Russia. * - guerman_k@mail.ru
 2 - Medical Institute REAVIZ, Moscow branch, Krasnobogatyrskaya str. 2, Russia
 3 - Lomonossov Moscow State University, Leninskie gory, 1, Moscow - Russia
 4 - UNLV, Las Vegas, Nevada, USA

Goal

- We considered the modern database for caffeine derivatives and found out that the best R_f was disgraceful as 8 – 10 – 15 %
- Metal atoms were considered as a helpful tool for improving R_f for caffeine derivatives making possible its further modeling
- Secondary goal was the analyses of the possibility of weak and very weak H-bond interactions with hydrophobic ReO₄⁻ tetraoxidoanions

3 new different compounds with identical general formula Me [ReO₄]₂ · caffeine · 6H₂O (Me = Co, Mg, Cd)

 $Co(H_2O)_4[ReO_4]_2 \cdot Caffeine*2H_2O$

$Mg(H_2O)_6[ReO_4]_2$ · caffeine

Biological reduction of pertechnetate ion in the implementation of technology biobarrer into aquifers contaminated with radioactive waste

A. Safonov^{1,2}, T. Khijniak³, V. Ilin¹, K. German^{1,2}

¹Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia
 ³ Medical Institute Reaviz, Moscow branch, Krasnobogatyrskaya,2, Moscow, Russia
 ²Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia

The contamination of many sites with pertechnetate is a long-term problem due to its long half-life and extreme mobility in the environment. Microbial reduction of Tc (VII) is possible under neutral, acidic and alkaline environments. Cells of sulfate-reducing bacteria (*D. desulfuricans, D. vulgaris, D. fructosovorans*), metal-reducing bacteria (*S. putrefaciens, S. oneidensis* MR-1, *G. sulfurreducens*) and *Escherichia coli* anaerobically reduced soluble pertechnetate in neutral environments (Lloyd et al., 1997, 1999; Wildung et al., 2000) to form an insoluble oxide $TcO_2 * nH_2O$. It is assumed that reduction occurs with hydrogenase (De Luca et al., 2001; Lloyd et al., 1997).

The purpose of this investigation is to explore the possibility of microbial reduction of pertechnetate anions in groundwater horizons to insoluble tetravalent state reducing the risk to humans and the environment. Radioactive wastes with low activity are often accompanied by a large amount of nitrates, therefore there will be a competition between nitrate and pertechnetate in course of their reduction.

Preliminary experiments in batch cultures with sulfate-reducing bacteria show that in case of simultaneous presence of pertechnetate and nitrate, pertechnetate reduction was significantly reduced or completely blocked depending on nitrate concentration. Only after the complete exhaustion of nitrate, the pertechnetate reduction starts and could be effective. Experiments of bioaccumulation of pertechnetate by sediments of different organic content shows that amount of soluble organic matter and microbial activity plays a major role in the reduction and immobilization of extremely mobile pertechnetate ion.

To optimize the choices of potential bacteria, which will be used for biobarrer we have isolated the bacteria from different extreme habitats with neutral and alkaline pH - nitrate-reducers, sulfare-reducing and haloalkaliphilic bacteria. In this investigation, we study the features and dynamics of the reduction process of pertechnetate anion by communities of microorganisms and pure cultures isolated from groundwater of different environments depending on the concentration of oxygen and nitrate anions in batch cultures and columns.

On the basis of the obtained data the rates and characteristics of the processes will be calculated for the biotechnological process of reduction of nitrate ions in the contaminated environment in situ.

Lloyd J. R., Cole J. A., Macaskie L. E. Reduction and removal of heptavalent technetium from solution by *Escherichia coli*. // Journal of Bacteriology.- 1997.-179.- 2014–2021.

Lloyd J.R., Ridley J., Khizniak T., Lyalikova N.N., Macaskie L.E. Reduction of technetium by *Desulfovibrio desulfuricans*: biocatalyst characterization and use in a flowthrough bioreactor. // Applied and Environmental Microbiology.- 1999.- 65.- P. 2691–2696.

Wildung R. E., Gorby Y.A., Krupka K.M., Hess N.J., Li S.W., Plymale A.E., McKinley J.P., and Fredrickson J.K. Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by *Shewanella putrefaciens*. // Applied and Environmental Microbiology.- 2000.- 66.- P. 2451–2460.

De Luca G., de Philip P., Dermoun Z., Rousset M., Verméglio A. Reduction of technitium(VII) by *Desulfovibrio fructosovorans* is mediated by a nickel iron hydrogenase. // Applied and Environmental Microbiology.- 2001.- 67(10).- P. 4583- 4587.

This work is supported by Russian Foundation for Basic Research project № 14-03-00067, 12-04-00646

Development of Bio filtration system for cleaning solutions from uranyl and pertechnetate anions

A. Safonov¹, O. Gorbunova, T. Khijniak², K. German^{1,3}

¹Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences,

Moscow, Russia

²Winogradskiy Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia

³ Medical Institute Reaviz, Moscow branch, Krasnobogatyrskaya,2, Moscow, Russia

Liquid radioactive wastes (LRW) are the one of important problems in radioactive waste management. Nowadays because of the large volumes of LRW one of the treatments ways is purification. Most of purification techniques are based on physical-chemistry processes (ion exchange, liquid extracting and so on). Microbial – metal interaction has been studied intensively and mechanisms of metal and radionuclide reduction were described. To date, considerable information on biotechnological methods for purification of solutions containing uranium, strontium, cesium and iodine (Macaskie, 1991) are accumulated and considered as cost and environmentally effective.

Ability to enzymatic reduction of hexavalent uranium has been found in a number of sulfate and iron-reducers. Some mesophilic bacteria could not only reduce, but also to obtain energy for growth (*Geobacter, Shewanella, Desulfotomaculum*) (Lovley, 1993; Pietzsch, Babel, 2003), while others were only able to reduce uranium (*Desulfovibrio*). Also, technetium reduction was detected.

The aim of this study is to develop technique, based on biological processes for cleaning LRW solutions from uranyl and pertechnetate anions.

Previously, for purification (detoxification) of low-radioactive LRW the model laboratory system based on immobilized cells of sulfate-reducing bacteria was developed and tested. The system operated in flow providing complete removal of sodium pertechnetate (50 μ M) at flow rate of 16 ml/h under neutral pH conditions. The use of immobilized cells of bacteria for biotechnological solutions has several advantages compared with the slurry. The cells attached to the carrier aren't washed out with passing through solution. It has a longer lifetime of the system and higher resistance to environmental stress (Lloyd J.R. et al, 1999).

In the presented investigation we will use the haloalkaliphilic and sulphate-reducing bacteria for reduction of technetium and uranium under alkaline and neutral conditions. The bacteria of genus *Halomonas* were tested and were able to reduce oxyanions under different conditions (Shapovalova A.A. et al, 2008).

Our experiments show that in case of mixture of anions (nitrate, senate and vanadate), consecutive reduction occurs, nitrate being reduced firstly, than selenate was the following and, at last, vanadate is reduced in accordance with their oxidation potentials.

Designed laboratory system will be tested for simultaneous reduction of uranium and technetium at the "Radon".

Lovley D.R., Roden E.E., Phillips E.J., Woodward J.C. Enzymatic iron and uranium reduction by sulfatereducing bacteria. // Marine Geology.- 1993.- 113.- P. 41-53

Lloyd J.R., Ridley J., Khizhniak T.V., Lyalikova N.N., Macaskie L.E. Reduction of technetium by *Desulfovibrio desulfuricans*: biocatalyst characterization and use in flow-through bioreactor. *J. Appl. Environ. Microbiol.*, 1999, v. 65, N 6, p. 2691-2696

Shapovalova A.A., Khijniak T.V., Tourova T.P., Muyzer G., Sorokin D.Y. Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. *Extremophiles*, 2008, N 12, p. 619-625

Thermal Plasma Technology

An electric current heats gas molecules to >5000K which causes electrons to be stripped from atoms forming a stream of ionised species

A high degree of ionisation causes a local thermodynamic equilibrium to be established between the electrons and the heavier species.

This causes the temperature of the heavier species and the temperature of the electrons to converge.

Thermal plasma streams reach temperatures between 10000 and 30000K at atmospheric pressure.

70 mm cathode torch argon plasma ~650 mm long; 1000 A, 450 kW

Platinum and Rhenium Recovery From Pt-Re Reforming Catalyst

1000 kg of catalyst fed (PGM value £180,000) into the plasma furnace over 5 trials.

Pt-Re/Al₂O₃ Catalyst with metal loadings of 0.34 wt% Pt and 0.24 wt% Re.

Pt and Re were extracted from the catalyst into an iron collector metal with a concentration of **2 wt% Pt and 1.5 wt% Re.**

Technetium and Rhenium Complexes with Heavy Arylchalcogenolates

Bruno N. Cabral^{1*}, Ernesto S. Lang¹, Adelheid Hagenbach², Lars Kirsten², Ulrich Abram²

¹Universidade Federal de Santa Maria, Brazil; ²Freie Universität Berlin, Germany

*e-mail: cabral@zedat.fu-berlin.com

Aryltellurolate and arylselenolate anions, which can be prepared from reactions of diaryldiselenides or diarylditellurides with LiBH₄, have been used for the synthesis of novel complexes with M–Se and M–Te bonds. Square-pyramidal oxidometallates of the general formula $[M^{VO}(EAr)_4]^-$ or trigonal-bipyramidal $[M^{III}(PPh_3)(L)(EAr)_3]$ complexes (M = Tc, Re; E = Se, Te) have been isolated from respective reactions with $[MOCl_4]^-$ or $[MCl_3(PPh_3)(CH_3CN)]$ (Fig.1).

Fig. 1: Syntheses performed.

The structures of some selected compounds are shown in the Fig. 2. The complexes show similar coordination features as observed for the arylthiolato compounds.¹⁻⁴ A remarkable difference is the formation of [M^{III}(PPh₃)₂(TePh)₃] complexes (Fig. 2c) with two axial PPh₃ ligands. Presumably, the long M–Te bonds (2.57 Å) allow the formation of coordination pockets being sufficient large for the accommodation of PPh₃, which is not the case for the selenium analogs or complexes with more bulky aryltellurolates, where the second axial position is occupied by acetonitrile.

Fig. 2: Molecular structures of a) [TcO(TePh)₄]⁻, b) [Tc(PPh₃)(MeCN)(SeMes)₃] and c) [Re(PPh₃)₂(TePh)₃]

1. McDonell, A. C.; Hambley, T. W.; Snow, M.R.; Wedd, A. G. Austr. J. Chem., 1983, 36, 253

- 2. Dilworth, J. R.; Neaves, B. D. Inorg. Chim. Acta , 1982, 65, L223
- 3. Hamorl, T. A.; Hussain, W.; Jones, C.J.; McCleverty, J. A.; Rothin, A. S. Inorg. Chim. Acta., 1988, 146, 181
- 4. Davison, A.; de Vries, N.; Dewan, J.C.; Jones, A. G. Inorg. Chem. 1988, 27, 1574

Technetium and Rhenium Complexes with Heavy Arylchalcogenolates

Bruno N. Cabral¹', Ernesto S. Lang¹, Adelheid Hagenbach², Lars Kirsten², Ulrich Abram² ¹Universidade Federal de Santa Maria, Brazil; ²Freie Universität Berlin, Germany

2nd October 2014

1. Hamorl, T. A.; Hussain, W.; Jones, C.J.; McCleverty, J. A.; Rothin, A. S. *Inorg. Chim. Acta.*, **1988**, *146*, 181 2. McDonell, A. C.; Hambley, T. W.; Snow, M.R.; Wedd, A. G. *Austr. J. Chem.*, **1983**, *36*, 253 Heavy Arylchalcogenolates of Tc(V)/Re(V)

M= Tc, Re E= Se, Te Ar= $-C_6H_{5}$, $-2,6-Me_2C_6H_{3}$, $-2,4,6-Me_3C_6H_2$

519

Heavy Arylchalcogenolates of Tc(III)/Re(III)

1.5
$$(ArE)_2 + 3 LiBH_4$$
 $\xrightarrow{MeOH/THF}$ 3 Li(EAr)
3 Li(EAr) + M(PPh_3)_2(MeCN)Cl_3 $\xrightarrow{MeOH/THF/CH_2Cl_2}$ $[M(PPh_3)_2(TePh)_3]$
M= Tc, Re
E= Se, Te
Ar $(M(PPh_3)(MeCN)(TeAr)_3)$
[M(PPh_3)(MeCN)(SeAr)_3]

Heavy Arylchalcogenolates of Tc(III)/Re(III)

[Re(TeDmph) ₃ (PPh ₃)(MeCN)]	2.54 - 2.56	2.35	2.08
	2.01 2.00	2.00	2.00

Summary

8th INTERNATIONAL SYMPOSIUM ON TECHNETIUM AND RHENIUM 29 SEPTEMBER - 3 OCTOBER 2014 Pornichet, FRANCE

Subatech, EMN/Universite de NANTES/ CNRS, Nantes, France

3 OCTOBER 2014

OFFICIAL CERTIFICATE

The International Advisory Committee of ISTR-2014 and International Jury of ISTR-2014 has resolved that the 1st prize and Mendeleev medal for the best poster presentation at ISTR-2014 is awarded to **Bruno Noschang Cabral** for the presentation **"Technetium and Rhenium Complexes with Heavy Arylchalcogenolates"**.

Professor Massoud Fattahi-Vannani For the Local Committee

Professor Konstantin German For the International Jury

German

together with molybdenum, it is important to find efficient ways of their separation. In recent publications, much attention has been paid to rhenium solvent extraction (SX) with synergistic mixtures based on amines [1]. Some of the good rhenium extractants are aliphatic alcohols [2]. Here we report the data on rhenium and molybdenum SX from sulphuric and nitric acid solutions with octyl alcohols and synergistic mixtures based on triisooctylamine (TiOA) and 2-octanone.

Solvent extraction separation of rhenium and molybdenum using octanols and mixtures of triisooctylamine and 2-octanone in acid medium

CONCLUSIONS

- 1. It has been established that rhenium SX with aliphatic alcohol performs better in sulphuric acid medium than in nitric one. When separating rhenium and molybdenum, alcohol should be secondary since it makes a good extractor for rhenium(VII) and poor for molybdenum (Fig. 1). For example, extracting from 6 mole/L H_2SO_4 provides a maximal rhenium distribution ratio of ~ 55 for 2-octanol. At the same time, the Mo distribution ratios do not exceed 0.4. So, the metal separation factor is $B_{Re/Mo}>100$, which makes 2-octanol a selective extractant for Re solvent extraction from sulphuric acid solutions in the presence of Mo.
- 2. Secondary octyl alcohol was tested for rhenium selective SX from sulphuric acid leaching solution of a ZhS-32 superalloy waste, and it gave satisfactory results for rhenium recycling from nickelbased heat-resistant alloy (HRA) waste, yielding the NH₄ReO₄ salt applicable in the production of rhenium metal powders. Based on this result a new method for selective recovery of rhenium from HRA waste was proposed and patented ([3], Fig 3).

- 3. Experiments have shown that for selective extraction of rhenium from nitric acid solutions it is appropriate to use a synergistic mixture of triisooctylamine with octyl ketone [4]. Since in solutions with pH<1, Mo(VI) is predominantly present as oxycations not prone to form complex anions in the HNO₃ medium, it is almost unextractable by a tertiary amine following the anion-exchange mechanism. Even at a TiOA concentration increased in 2-octanone from 5 to 50%, when extracting from 3 mole/L HNO₃, the D_{MO}, did not exceed 0.09, whereas D_{Re} increased more than 10 fold (from 1.3 to 14). Increasing of the nitric acid concentration from 1 to 7 mole/L resulted in decreasing of the distribution coefficient from 26 to 1.3 for 30% TiOA in 2-octanone. Noticeable Mo(VI) SX terminates in solutions with more than 5 mole/L HNO₃.
- 4. A synergistic mixture of TiOA with 2-octanone can be considered as a promising extractant for separating rhenium and molybdenum in acid solutions, which has been proved in trial experiments on rhenium separation from nitric acid leaching solutions of ZhS-32 alloy.

REFERENCES

[1] Xiong Ying, Shan Wei-jun, Lou Zhen-ning et al. J. of Phase Equilibria and Diffusion. 2011. Vol. 32(3). Pp. 193-197.

[2] RF Patent 2330900, MPK S22V 61/00, S22V 3/26 The method for rhenium (VII) extraction from acidic solution /A.G.Kasikov, A.M.Petrova (RF) -

№2006142845/02; Appl. 04.12.06; Publ. 10.08.08. Bull. №22.

[3] RF Patent 2412267, MPK S22V 61/00, S22V 23/00, S22V 3/08 The method for rhenium recovery from the waste of nickel-containing alloys / A.G.Kasikov, A.M.Petrova, E.G.Bagrova, N.I.Serba, V.T.Kalinnikov (RF) - №2009145364/02; Appl. 07.12.09; Publ. 20.02.11. Bull.№5.

[4] Kasikov A.G., Petrova A.M. Rhenium(VII) solvent extraction by mixtures of tertiary amine and oxygen-containing extragents from sulphate media // Proceedings of The 7th International Symposium on Technetium and Rhenium: Science and Utilization "ISTR-2011", Moscow, 4-8 July, 2011. Moscow: Granitza, 2011. Pp. 232-234.

ACKNOWLEDGEMENT

The work was kindly supported by the Russian Fund of Fundamental Research, grant 14-03-31012 mol_a

Anna Petrova and Yana Obruchnikova at the Thursday session

Evaluation of Rhenium Production Rates in Tungsten Irradiated in Fast Reactors by Using Continuous Energy Monte Carlo Code MVP

Tsugio Yokoyama¹, Atsunori Terashima² and Masaki Ozawa²

1] Toshiba Nuclear Engineering Services Corporation, Advanced Reactor Engineering Department, 8, Shin-sugita-cho, Isogo-ku, Yokohama, Kanagawa, Japan

2] Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

Après ORIENT research program, newly initiated in 2011, includes transmutation of stable elements to create rare metals / rare earth (RE) elements by (n,γ) reaction with subsequent β^{-} decays in the reactors. In this paper, we discuss Rhenium (Re) production by irradiating Tungsten (W) metal in fast reactors. Re is one of the rarest metals, and W-Re is well-known forefront, heat-resistant super-alloy for jet- engine, for instance.

Fig. 1 shows the transmutation scheme of W to Re including neighbor element chains.

Fig.1 Transmutation scheme of Re production from irradiated W in reactors

In the figure, upper data of each horizontal line indicates the neutron energy averaged capture cross section in fast reactors while the lower does that in light water reactors (LWRs). The differences are one order or more, which means that the exact evaluation of neutron energy spectra of the reactors or zones of the reactor where W is irradiated is crucial to determine the production rate of Re. Thus we employed the continuous energy Monte Carlo Code MVP^{*1}, where the neutron energy spectra of each zone of reactors are exactly simulated as well as detailed configurations for evaluating the effective neutron cross sections and neutron flux, while the conventional ORIGEN-2 with one group cross section system^{*2} is used for calculating the transmutation of each nuclides.

The total flux of fast reactor is generally one order higher than that of LWRs, thus a middle scale fast reactor is employed to irradiate the target assembly that contains W pellets in the pins.

Fig.2 illustrates the core layout and target assemblies for Re production from W irradiated in the fast reactor with 710 MWt. A total of 54 target assemblies containing inner 19 pins of tungsten (W) pellets surrounded by 42 pins of zirconium hydride(ZrH_2) pellets are located at the peripheral of the core, the equivalent diameter and height of which is about 1.8 m and 0.9 m, respectively. Hydride is employed to increase the transmutation rate by slowing down the fast neutrons, where the capture cross section of W is larger at lower neutron energy regions.

Case 1 of Table 1 lists the weight of the transmutation from natural W to total Re after one year irradiation and Fig.3 shows the change of the isotopes during two years including one year cooling time after the irradiation.

Fig.2 Core layout and target assemblies with tungsten and hydride pins

Fig. 3 indicates the main radioactivity istope of Re, Re-188, will be decayed rapidly if Re is separeted from W just after the irradiation because the parent of Re-188 is W-188. In 4 cooling, months the secondly intensive radioactivity, Re-186, is decreased less than the exemption level, 1000 Bq/g. Case 2 of Table 1 is the Re production when neutron moderator is not used and the whole 61 pins of the target assembly are W metal. The loaded weight of W in Case 2 is 4 times more than that of Case 1, though the production of Re is less by one order than that of Case 1. This is mainly due to the neutron spectrum softening effect of zirconium hydride.

The effective capture cross section of W-186, the main parent of Re, is 1.731 barn for Case 1 evaluated by MVP code, while that of Case 2 is 0.012 barn. This cross sections of Case 2 seems much smaller than 0.597 barn shown in Fig. 1, because the former is the effective one considering the heterogeneous effect on neutron self shielding and the latter is that for infinitely diluted nuclide. Precise seaparation of Re from rad.

W, Ta and Os will be issue.

Fig.3 Change of isotopes during irradiation and cooling

Case	Number of W pins	Number of ZrH ₂ pins	Loaded weight of W(g)	Produced weight of Re after one year irradiation(g)
1 (Reference)	19	42	1.6×10^{6}	1.4×10^{4}
2(No moderator)	61	0	5.0×10^{6}	1.5×10^{3}

Table1 Total mass of W and Re along with irradiation and cooling

*1) Nagaya,Okumura,Mori and Nakagawa," MVP/GMVP Version 2 : General Purpose Monte Carlo Codes for Neutron and Photon Transport Calculations based on Continuous Energy and multigroup Methods"(MVP/GMVP Version 2 JAERI 1348,June 2005 Japan Atomic Energy Research Institute. *2) Okumura, Sugino, Kojima, Jin, Okamoto, Katakura, JAEA-Data/Code 2012-032

A Set of ORIGEN2 Cross Section Libraries Based on JENDL-4.0: ORLIBJ40, Dec. 2012, Japan Atomic Energy Research Institute.

Evaluation of Rhenium Production Rates in Tungsten Irradiated in Fast Reactors by Using Continuous Energy Monte Carlo Code MVP

> Tsugio Yokoyama¹, Atsunori Terashima² and Masaki Ozawa²

1] Toshiba Nuclear Engineering Services Corporation, Advanced Reactor Engineering Department, 8, Shin-sugita-cho, Isogo-ku, Yokohama, Kanagawa, Japan

2] Tokyo Institute of Technology, Research Laboratory for Nuclear Reactors, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

The Significance of Producing Rhenium

- In recent years, the demand for rhenium is growing as an additive to super alloys for jet engines.
- However, rhenium is one of the rarest elements in earth.
- Because there is no ore containing rhenium alone, and it is mainly included in copper or molybdenum ore, production amount of them significantly affect the supply of rhenium.
- Therefore, active technology for creation of rhenium that we advocate has a great value.
- Après ORIENT research program, newly initiated in 2011, includes transmutation of stable elements to create rare metals / rare earth (RE) elements by (n, gamma) reaction with subsequent beta decays in the reactors.

Objectives

To clarify the feasibility of Rhenium (Re) production by irradiating Tungsten (W) metal in fast reactors by using the Monte Carlo Calculations.

Irradiation Core Model and Evaluation Method

Fig. 1 shows the transmutation scheme of W to Re including neighbor element chains. In the figure, upper data of each horizontal line indicates the neutron energy averaged capture cross section in fast reactors while the lower does that in light water reactors. The differences are one order or more, which means that the exact evaluation of neutron energy spectra of the reactors. Thus we employed a continuous energy Monte Carlo Code MVP^{*1}, where the neutron energy spectra of each zone of reactors can be exactly simulated as well as detailed configurations for evaluating the effective neutron cross sections and neutron flux, while the conventional ORIGEN-2 with one group cross section system^{*2} is used for calculating the transmutation rates of each nuclides by applying the effective cross section and flux evaluated by the MVP code.

We employed a medium size fast reactor illustrated in Fig. 2, as the energy integrated neutron flux is higher than that of typical LWRs. The target assemblies are located at the peripheral of the core for minimizing the impact to the core performances.

2

Fig. 4 Change of specific activities and the effect of W separation for reference case

Results and Discussion

Table 1 lists the weight of the transmutation from natural W to total Re after one year irradiation

No moderator case of Table 1 is the Re production when neutron moderator is not used and the whole 61 pins of the target assembly are W metal. The loaded weight of W in No moderator Case is 4 times more than that of the reference case, though the production of Re is less by one order than that of the reference case. This is mainly due to the neutron spectrum softening effect of zirconium hydride.

Fig.3 and Fig.4 show the weight and the specific activities of the isotopes during two years including one year cooling time after the irradiation for the reference case.

Fig. 4 indicates the main radioactivity isotope of Re, Re-188, will be decayed rapidly if Re is separated from W just after the irradiation because the parent of Re-188 is W-188. In 4 months cooling, the secondly intensive radioactivity, Re-186, is decreased less than the exemption level, 1000 Bq/g.

The effective cross section of W-186 is 1.731 barn for reference case evaluated by MVP code, while that of no moderator case is 0.012 barn because these effective cross sections are considering the neutron spectrum as well as the heterogeneous effect on neutron self shielding.

Precise separation of Re from radioactive W, Ta and Os will be issue.

Conclusions

- •The feasibility of Rhenium (Re) production by irradiating Tungsten (W) metal in a medium size fast reactor was evaluated by using the Monte Carlo Calculation MVP.
- The production rate of total Re is 14 kilograms per year, where the main contributor is Re-187, when the target assemblies are located at the core peripherals with neutron moderators.
- •The specific activity of Re can be reduced below the exemption level if W is separated after the irradiation because the main contributor of activity is Re-188, which is the daughter of W-188.
- •The ways of separation and allowable concentration of W, Ta and Os will be issue in future.

References

*1) Nagaya,Okumura,Mori and Nakagawa、" MVP/GMVP Version 2 : General Purpose Monte Carlo Codes for Neutron and Photon Transport Calculations based on Continuous Energy and multigroup Methods" (MVP/GMVP Version 2 JAERI 1348,June 2005 Japan Atomic Energy Research Institute.

*2) Okumura, Sugino, Kojima, Jin, Okamoto, Katakura, JAEA-Data/Code 2012-032

A Set of ORIGEN2 Cross Section Libraries Based on JENDL-4.0: ORLIBJ40, Dec. 2012, Japan Atomic Energy Research Institute.

Acknowledgment

The authors would like to thank Dr. Konstantin German of Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences for his support towards this work and presentation.

Application of Solvent Extraction Preconcentration methods for Spectrophotometric Determination of Traces of Molybdenum in Radiopharmaceutical Praparation using 1,5- Diphenylcarbazide.

Nafisa H. Gmati and M. A. Abuzwida E-Mail : Iman <u>1986624@yahoo.com</u> E-Mail : BUZU-MA@LTTNET.NET

Radiochemical Deprtment Tajoura Nuclear Research Center (TNRC) P.O.Box: 30878-Tripoli- Libya

One of the most important tasks of Tagoura Nuclear Research Center is the production of Radioisotopes for Radiopharmaceutical preparations. Tc^{99m} and I¹³¹ are the main isotopes usually prepared for medical use in local hospitals. Radiochemical purity [RCP] for the prepared isotopes is very important, Where Mo traces in the final product has to be less than 10 ppm.

The main porpoise for the present work were to develop an accurate and simple method for the determination of Mo in a trace level, which satisfy the know how requirements. A solvent extraction pre concentration method for spectrophotometric determination were obtained, the method were based on the reaction of Mo with 1,5-diphenylcarbazide to form a soluble complex in carbon tetrachloride. The complex show a maximum absorbance at λ = 550 nm., and obeys Beer's law with a molar absorption coefficient [ϵ] of 4x10³ l/mol.cm.

Mole ratio and continuous variation methods were applied to determine the metal to ligand ratio and a ratio of 1:2 respectively were found, also the optimum pH has been found between [3.5-5] and the effect of adverse ions like [Al, Sn, Se, Te] were studied. Finally, the proposed method has been applied for the analysis of Mo eluted from old generators imported from Polish company (POLATOM) and found to be sensitive, simple, accurate, less time consuming, and can be applied inside the Hot-cells.

BIO-SORPTION PROCESSES FOR RADIOACTIVE WASTE PURIFICATION FROM Tc, U, Sr AND Cs

A. Safonov¹, V. Tregubova¹, O. Gorbunova¹, K. German¹, T. Nazina²

¹Russian academy of sciences A.N. Frumkin Institute of Physical chemistry and Electrochemistry RAS (IPCE RAS), 31 Leninsky prospect, Moscow GSP-1, 119071 Russia ²Russian academy of sciences S.N. Winogradskiy Institute of Microbiology e-mail <u>alexeysafonof@gmail.com</u>

The main sources of environments contamination with radionuclides are nuclear explosions for military or civilian purposes, technological and accidental releases at facilities of the nuclear fuel cycle (NFC), nuclear facilities of naval and civilian fleets, radiation accidents, mining and processing of uranium ores, production and processing of the waste issued from nuclear reactors, materials nuclear power plants (NPPs), disposal processing of solid and liquid radioactive waste. A wide range of man-made radionuclides, including long-lived (U, Pu, Tc), and the most concentrated in LRW (Sr, Cs) into the environment remains an environmental hazard for hundreds and thousands of years.

Microbial cells can affect the chemical parameters of radionuclides with biosorption, bioaccumulation and dissimilatory reducing of metals and metalloids such as U(VI), Tc(VII) and others. Microorganisms are able to immobilize radionuclides by the concentration in the biofilm, formation of dominant types of radionuclides and mineral phases, including new mineral formations, production of complexing agents, the change of pH and Eh in waste solutions.

In this paper, we study the processes of radionuclide biosorption on laboratory waste models by biomass of microorganisms isolated from the deep repository of liquid radioactive waste. For the experiment, were obtained pure culture of Pseudomonas Putida (put), Native culture, containing a wide range of microorganisms (nat) and a mixture of the above two cultures.

Activity of radionuclides (except for ¹³⁷Cs), remaining in the liquid phase was measured by liquid-scintillation spectrometer SCS-07P-B11 (Russia) using a scintillator «Opti Phase HiSafe-3." Most solutions containing ¹³⁷Cs, were measured using a semiconductor gamma spectrometer with a coaxial detector of purity germanium (Ge-2520, Canberra). We made two types of experiments: a chemical sorption type, when bacteria was treated by metals during two hours in physiological liquid, and a living type, when the microorganisms were cultivated in a mineral Adkins medium following composition: NH₄Cl – 1 g / l, NaCl - 0,8 g / l, CH₃COOH - 2 g / L, NaNO₃ - 1 g / l, KCl, MgSO₄, Na₂SO₄ - 0,1 g / l, in anaerobic conditions, at neutral pH, 20 ° C for 10 days with the addition of the metals. For both experiments we used following concentrations of radionuclides: Cs (195Bk/ml) -, Sr (38 Bq / ml) -, U (as UO₂(NO₃)₂ -1 mg / ml) -, Th (1 mg / ml),-Tc (253,9 Bq / ml). The final biomass concentration was 1.5 -2 g / l.

The experiment found that 1 g of biomass is able to sorb 0.177 g UO2,; 0.217 g of Th; 10.16 Bq Sr; 10.42 Bq Cs; 31.47 Bq-Tc. According to the study, the sorption of Th was almost 100%, U - 85%, the sorption of Cs, on average - 10%,

Sr - 50%, and Tc - 25%. The results of the percentage of sorption are shown in Fig. 1.

Fig 1. Percentage of sorption of radionuclides by microorganisms - Put, □- Nat, ■ Mix

Thus, studied microorganisms were found to be able to immobilize artificial radionuclides in the model RW solutions, sorbing them on surface, and inside the cell. Bacteria can be used for develop the new cheap and nontoxic technology for RW treatment.

This work was supported by the financial assistance of the Russian Foundation for Basic Research 13-04-92105

Presentation of the selected posters by Dr. A. Safonov

MEASUREMENT OF 99Tc VIA CHERENKOV COUNTING

Mojmír Němec, Kateřina Čubová

CTU in Prague, Czech Republic

WHAT

testing the possibility to measure ⁹⁹Tc via Cherenkov counting after its selective extraction.

<u>WHY</u>

finding a system allowing a one-step extraction and measurement in a scintillation vial.

<u>HOW</u>

- Dependence of the efficiency of Cher. counting on the refractive index (n)
- Possible solution: to find a system for the extraction of ⁹⁹Tc into organic phase with high n
- Organic phase: CS₂ n = 1,74 (20°C) and CCI₄ n = 1,4596 (20°C)
- Extraction of ⁹⁹Tc using tetraphenylarsonium chloride from alkaline solution (pH > 10)
- The emitted Cherenkov radiation was measured using the LSC

CONCLUSIONS

- measurement of ⁹⁹Tc via Cherenkov counting should be possible.
- unfortunetaly the system is unstable in a short time ⁹⁹Tc is re-extracted back to the aqueous phase

FUTURE

- To identify stable extraction system conditions
- Determination of the detection efficiency of the Cherenkov counting

ACKNOWLEDGEMENT

This work was supported by grant project of the Ministry of Industry and Trade of the Czech Republic MPO TIP FR-TI3/245

Tc(V) and Re(V) oxido complexes with tetradentate thiocarbamoylbenzamidines for bioconjugation

Adelheid Hagenbach, U. Abram and co-workers

Principal Labeling Procedures

Direct Labeling

- Direct Labeling of a biomolecule
- via functional groups of the molecule

Bioconjugate Approach

- Encapsulating of a radionuclide with the help of a chelator and coupling on a biomolecule

The ligands and their Re and 99Tc complexes

References

International Atomic Energy Agency, *Technetium-99m radiopharmaceuticals: Manufacture of kits*, 2008, ISBN 978–92–0–100408–6, 7-19.

W. König, R. Geiger, Chem. Ber., 1970, 103, 788-793.

Y. M. Angell, C. García-Echeverría, D. H. Rich, *Tetrahedron Lett.*, 1994, 35(33), 5981-5984.

V. Rostovtsev, L. Green, V. Fokin, K. Sharpless, Angew. Chem. Int. Ed., 2002, 41, 2596.

H. H. Nguyen, Dissertation, Freie Universität Berlin, 2009.

A. L. Moore, D. K. Bucarb, L. R. MacGillivrayb, P.D. Benny, *Dalton Trans.*, 2010, 39, 1926–1928.

J. lehl, I. Osinska, R. Louis, M. Holler, J. F. Nierengarten, *Tetrahedron Lett.*, 2009, 50, 2245-2248.

W. Huang, Y. Chiang, J. Lin, Y. Chou, C. Cheng, R. Liu, *J. Nucl. Med.*, 2003, 44, 999-1005.

Review on Chemical Separation of Tc with Extraction Chromatographic Resins

A. Bombard, S. Happel

Monitoring of Tc-99 in environment for dose assessment

- 2 extraction chromatographic resins based on anionic exchanger can be used for Tc(VII) isolation/purification
 - TEVA
 - WBEC
- TcO_4^- carried by Re as ReO_4^- for chemical yield determination
- Separation scheme made of 2 steps: pretreatment and purification prior to measurement
- Resins tested for environmental samples

The 8th International Symposium on Technetium and Rhenium: Science and Utilization

Microorganisms from extreme habitats for use in biological technologies to LRW treatment

Safonov¹, S. Gavrilov², T. Khijniak², K. German¹, I. Troshkina³

¹Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia ²Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia

³Mendeleev University of Chemical Technology Moscow, Russia

Why bacteria?

Small agents for Me reducing in environments in big quantities (10^2 - 10^3 cell per ml in water 10^3 - 10^7 per 1 cm³ in soils

High speed of division rate of bacteria 1 time per 30 min in geometrical progression

Bacteria can survive and be efficient in extreme conditions: *thermophilic* 50-90 °C, **alkaliphile** pH 10-11, **acidophile** (pH 1-2), ionizing radiation dose up to 1-10 kGr

Good economic parameters in comparison with some chemical methods

Ability to live in anaerobic conditions, synthesizing C_{org} for cell growth from CO_2 and H_2O

"Green chemistry techniques": no toxic reagents, acids, alkalines in high concentrations

Different abilities of cells biochemistry: oxidizing organic matter, reducing nitrate, sulphate, metals, sorption metals on cell wall, membrane and other organoids.

Some mechanism of Me interaction

Tc (VII, IV) precipitation in insoluble sulfide

Strategy of work Searching microorganisms in samples from extreme Bacteria isolating on . conditions different cultural media WANTED Studying of bacteria metabolic activity for Bacteria from Me insolubilization High salinity, high & low pH conditions, high temperature for good job! **Development of methods** for bacteria using in situ and in apparatus

546

Bacteria from high salinity and alcaliphilic condition

Are able to: 1. reduce Tc (VII) to Tc (IV) in alkaline

conditions (pH 10.5)

Kulunda Steppe soda lake, in south-eastern Siberia (Altai, Russia), salinity up to 150 g/l, pH 10,5-11

- 2. reduce Re (VII) to Re (IV)
- 3. reduce U (VI) to U (IV)
- 4. Reduce NO_3^- to N_2

Bacteria from high temperature condition

uramphite; $(\mathbf{NH}_4)(\mathbf{UO}_2)(\mathbf{PO}_4)\cdot \mathbf{3H}_2\mathbf{O}$ ingyoite; $(\mathbf{CaU}(\mathbf{PO}_4), \cdot \mathbf{H}_2\mathbf{O})$

Thermal springs of **Kuril** Islands t>90°C salinity up to 70 g/l

Are able to: 1. reduce Tc (VII) to Tc (IV) in neutral and acid conditions (pH 4.5-8) 2. reduce U (VI) to U (IV)

Bacteria from repository of liquid medium RW

Deep (380-410 m) liquid repository of radioactive wastes Severniy, Russia Krasnoyarsk region. C NO₃⁻ 1-300 g/l,

Are able to:

1. reduce Tc (VII) to Tc (IV) in neutral conditions (pH 7-8)

- 2. reduce U (VI) to U (IV)
- 3. Reduce NO_3^- to N_2
- 4. Reduce SO_4^{2-} to H_2S
- 5. Sorb U on cell wall and in cytoplasm

Perspective ways of using

1. Development and design of flow-through bioreactor for the decontamination of LLRW from uranyl cations, pertechnetate anions

Technetium reduction by

laboratory system based on immobilized cells of sulfate-reducing bacteria. Pertechnetate reduction with and without donor, respectively.

Designed laboratory system will be tested for simultaneous reduction of uranium and technetium at the "Radon".

Re precipitation from liquids

Perspective ways of using

Biological reduction of pertechnetate ion in the implementation of biobarrer technology

6. Consumption O_2 and Decreasing Eh to "-" zone

Mechanism of biosorption

OCTAHEDRAL CHALCOGENIDE RHENIUM CLUSTER COMPLEXES WITH PHOSPHINE AND PYRIDINE DERIVATIVES: SYNTHESIS, STRUCTURE AND PROPERTIES

Ivanov A.A.^{1,2,3}, Khlestkin V.K.¹, Shestopalov M.A.^{1,2,3}, Brylev K.A.^{1,2,3}, Mironov Y.V.^{1,2,3} ¹Novosibirsk State University, Novosibirsk, Russia ²Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia ³Scientific Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia jiuc_13@mail.ru

Chemistry of octahedral chalcogenide rhenium cluster complexes $[{Re_6Q_8}L_6]$ (Q = S, Se, L = any ligands) is nowadays efficiently developing. A number of rhenium cluster complexes with inorganic and organic terminal ligands has been synthesized. One of the most significant aims is to obtain complexes with ligands bearing functional groups such as carboxy-, amino- and hydroxy group. Such compounds may potentially combine a number of physicochemical properties like luminescence or radiocontrast with biocompatibility or biological activity.

In this work we present an investigation of the interaction of octahedral chalcogenide rhenium cluster complexes $Cs_4[{Re_6S_8}X_6]$ and $Cs_3[{Re_6Se_8}X_6]$ (X = Cl, Br, I) with different organic ligands: 4-aminopyridine (4-NH₂-py), pyrazine (pyz), triphenylphosphine (PPh_3) , 3-(diphenylphosphine)propionic acid (PPh₂(CH₂)₂COOH). All reactions were carried out in a sealed tube in the melt of ligand. Thus, cluster complexes: $[{Re_6Q_8}(4-NH_2$ py_6]Br₂, *trans*-[{ Re_6Q_8 }(pyz)_4I_2], trans- $[{Re_6Q_8}(PPh_3)_4X_2],$ $[{Re_6Q_8}(PPh_2(CH_2)_2COOH)_6]Br_2$ (Fig. 1) (Q = S, Se, X = Cl, I) were obtained. All synthesized compounds were characterized by X-ray diffraction on the single crystal and powder, IRspectroscopy and elemental analysis. For the complexes

with triphenylphosphine and 4-aminopyridine ligands luminescence properties were studied.

The work was financially supported by the Russian Foundation for Basic Research (project№ 13-03-90402, № 14-04-01816).

PROSPECTS OF OCTAHEDRAL RHENIUM CLUSTER COMPLEXES IN BIOLOGY AND MEDICINE

Michael A. Shestopalov^{1,2,3}, Anna A. Krasilnikova³, Kristina E. Zubareva¹, Konstantin A. Brylev^{2,3}, Yuri V. Mironov^{2,3} ¹Scientific Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia ²Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia ³Novosibirsk State University, Novosibirsk, Russia shtopy@niic.nsc.ru

Complexes with the general formula $[{Re_6(\mu_3-Q)_8}L_6]^n$ contain a robust cluster core ${Re_6(\mu_3-Q)_8}^{2+}$ with a nearly regular Re₆ octahedron residing inside a Q₈ cube (Q = S²⁻ or Se²⁻) (**Figure**). In addition, each rhenium atom is coordinated by an outer L ligand. The cluster core is responsible for phosphorescence in the red and near-infrared regions with a microsecond excited-state lifetime upon UV-visible excitation and radiopacity due to high local concentration of heavy elements.

We have succeeded in preparing the first water-soluble hexarhenium cluster complexes with a heterocyclic outer ligand environment $[{Re_6(\mu_3-Q)_8}(BTA)_6]^{4-}$ (Q = S or Se). The complexes exhibit red

Representation of the $[{Re_6Q_8}L_6]$ cluster units

phosphorescence with lifetime and quantum yield values among the highest ones reported so far for chalcogenide cluster complexes making them promising bioimaging and PDT agents. To prove the potential, the cellular uptake and toxicity were evaluated for the complexes. It was found that the both clusters were taken up by the cells and, at the same time, did not exhibit acute cytotoxic effects at the concentration level of practical biological applications. The complexes $[{Re_6(\mu_3-S)_8}(BTA)_6]^{4-}$ and $[{Re_6(\mu_3-S)_8}(BTA)_6]^{4-}$ were localized in the cell cytoplasm. The preparation of such complexes may be the first step toward the creation of a new class of NIR phosphorescent dyes based on hexanuclear metal clusters.

Also we have demonstrated the radiopacity of different cluster compounds based on $\{Re_6Q_8\}$ cluster core (Q = S, Se or Te) by the X-ray computed tomography *in vitro*. Despite of the highest radiopacity of the complex with $\{Re_6Te_8\}$ -cluster core revealed, the most perspective radiocontrast agents are the {Re₆Se₈}-based compounds since their outer ligands can be purposefully modified allowing us to create various compounds with necessary properties. The cluster cellular uptake and the toxicity were evaluated for the complex $Na_2H_8[{Re_6Se_8}(P(CH_2CH_2CONH_2)(CH_2CH_2COO)_2)_6]$. It was shown that the complex was not taken up by the cells and, at the same time, did not exhibit acute toxic effects on Hep2 cell culture and BALB/C mice. That motivated us to carry out the X-ray computed tomography in vivo. The intravenous administration of cluster complex solution into Wistar rat leads to contrasting kidneys and urinary bladder and excretes through the kidneys rapidly. These experiments may constitute the first step toward the creation of a new class of effective X-ray contrast agents based on of hexanuclear metal clusters.

This work was supported by the Russian Foundation for Basic Research (Grant 14-04-01816).

Rhenium recovery from secondary raw materials

Anna M. Petrova, Alexandr G. Kasikov

I.V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials of the KSC RAS, Apatity, Russia, E-mail: Petrova_AM@chemy.kolasc.net.ru

R 4

Rhenium is irreplaceable as component in some catalysts and heat-resistant alloys. Although much required, rhenium production from natural minerals is limited due to its scarcity and dissipation in different mineral deposits. The only way therefore is in improving the rhenium recovery from process and machining wastes [1].

World rhenium demand (2013) - 65 mt [1, 2]

In 2013, the price of catalytic-grade APR remained at \$3,800 per kilogram until April, when the price slowly began to decrease to \$3,150 per kilogram in July and remained at that level until the year end. Rhenium metal pellet price started out the year at \$3,420 per kilogram until the beginning of May, when it began to slowly decrease until July where it remained at \$2,980 per kilogram until yearend.

t Consumption of catalyst-grade APR by the petroleum industry was expected to remain at high levels. Demand for rhenium in the aerospace industry, although more unpredictable, was expected to continue to increase.

However, the major aerospace companies were expected to continue testing superalloys that contain onehalf the rhenium used in currently designed engine blades, as well as testing rhenium-free alloys for other engine components. New technologies continued to be developed to allow recycling of superalloy scrap. Secondary rhenium recycling rates continued to increase worldwide [3].

The technologies available for recycling of the **spent platinum-rhenium catalysts** can be roughly divided into two groups, one incorporating decomposition of catalyst aluminum oxide base, the other – selective extraction of rhenium without the base decomposition. In the former, the catalyst is decomposed by chemical (acid or base leaching) and thermochemical methods (sintering with base), yielding much rhenium but undesirable due to high reagent consumption and sizeable aluminate waste.

The other group incorporates selective high-temperature distillation Re_2O_7 , selective chemical leaching (with weak acid under oxidative conditions) and electrochemical leaching (with acid solutions under direct or alternating current).

The most economical processing of **rheniumcontaining** heat-resistant **alloys waste** is vacuum *remelting* developed at FSUE VIAM (Russia, Moscow). Selective rhenium recovery from the waste can proceed by two routes: oxidation-thermal or hydrometallurgical methods (after preliminary disintegration of the metal wastes if necessary).

The group of oxidation-thermal methods also includes high-temperature oxidative distillation of Re_2O_7 and thermochemical decomposition (sintering); Hydrometallurgical methods are chemical and electrochemical leaching (usually in acid media).

More about these processes can be found in the monograph [1]:

ACKNOWLEDGEMENTS:

The work was kindly supported by the Russian Fund of Fundamental Research, grant 14-03-31012 mol_a

А.Г. Касиков, А.М. Петрова

РЕЦИКЛИНГ РЕНИЯ

Abstract

The book summarizes the results of research and practical experience in the recycling of secondary rheniumcontaining raw materials, including the deactivated catalysts of refining and waste of the processing and exploitation of nickel-based superalloys. A brief description of the current state and prospects of the rhenium market, as well as areas of application - source of secondary rhenium-containing raw materials Is provided. It contains a description and systematization of domestic and foreign experience in the field of technology of rhenium recycled raw materials and a classification of existing technologies.

The book is intended for scientists and engineers involved in chemistry, analysis and technology of rhenium, as well as recycling of secondary raw materials; may be useful both for graduate and university students.

PREFACE

INTRODUCTION

Chapter 1. RHENIUM RECYCLING FROM SPENT CATALYSTS

CONTENTS

- 1 Brief History
- 2 Rhenium Recovery from Spent Rhenium-containing Catalysts
- 2.1 Processing of Spent Platinum-Rhenium Catalysts with Complete
- Decomposition of the Base 2.1.1 Termochemical Decomposition of the Catalysts
 - 2.1.2 Chemical dissolution
- 2.2 Processing of Spent Platinum-Rhenium Catalysts without
- Decomposition of the Base 2.2.1 Selective High-temperature Oxidative Distillation of the
- Rhenium 2.2.2 Selective Chemical Leaching of the Valuable Constituents
- 2.2.3 Selective Electrochemical Leaching of the Valuable Constituents

Chapter 2. PROCESSING OF THE RHENIUM-CONTAINING ALLOYS WASTE

1 Brief History

- 2 Classification and Characteristic of the Waste
- 3 Recycling of the Rhenium-containing Alloys Waste by Remelting Method
- 4 Rhenium Recovery from the Rhenium-containing Alloys Waste
- 4.1 Fragmentation of the Rhenium-containing Alloys Waste 4.2 Oxidation-thermal Methods of the Rhenium Recovery from the
- Alloys Waste
 - 4.2.1 High-temperature Oxidative Distillation of the Rhenium
- 4.2.2 Termochemical Oxidative Decomposition 4.3 Hydrometallurgical Methods of the Rhenium Recovery from the
- Alloys Waste 4.3.1 Electrochemical Processing of the Rhenium-containing Alloys
- 4.5.1 Electrocite intera Processing of the Rhanium containing Alloys Waste
- 4.3.2 Chemical Processing of the Rhenium-containing Alloys Waste CONCLUSIONS

THE BIBLIOGRAPHY

 Kasikov A.G., Petrova A.M. Rhenium recycling. M.: RIOR INFRA-M. Moscow, 2014.
94 P.

 [2] http://www.lipmann.co.uk/articles/ metal-matters/rhenium-updated (2014)
[3] http://minerals.usgs.gov/minerals/pubs/ commodity/rhenium (2014)

Full-text of the monograph is available on-line (in Russian) at web site

http://znanium.com/go.php?id=453154

8th INTERNATIONAL SYMPOSIUM ON TECHNETIUM AND RHENIUM 29 SEPTEMBER - 3 OCTOBER 2014 Pornichet, FRANCE

Subatech, EMN/Universite de NANTES/ CNRS, Nantes, France

3 OCTOBER 2014

RESOLUTION

The International Advisory Committee of ISTR-2014 has resolved that the next *International Symposium on Technetium and Rhenium* will be held in Sydney (Australia) in the year 2017.

The International Advisory Committee for ISTR-2017 consists of the following scientists:

- U. Abram (Germany)
- R. Alberto (Switzerland)
- M. Chotkowski (Poland)
- K. Czerwinski (USA)
- M. Fattahi (France)
- T.I.A. Gerber (South Africa)
- K.E. German (Russia)
- F. Moisy (France)
- Ya. Obruchnikova (Russia)
- F. Poineau (USA)
- A. Sattelberger (USA)
- I. D. Troshkina (Russia)
- G. Thorogood (Australia) Chairman
- A.Yu. Tsivadze (Russia)
- T. Yoshimura (Japan)

We hope to meet you in Sydney.

Massoud FATTAHI

Gordon THOROGOOD

Chairman Organizing Committee ISTR-2014

Chairman Organizing Committee ISTR-2017

Author Index

Abiad Lidwine	227
Abrom Illrich	274 200 516 540
Abumuida Mahammad	574, 590, 510, 540
Aslesses Lexing	333
Ackermann, Janine	3/4
Airapetova, N. Germanovna	476
Afanasiev, Andrey	494
Altmaier, Marcus	204
Aubé, Christophe	474
Babain, Vasiliy	404
Balanovskyi, Nikolay	424
Baron, Pascal	47
Belloche, Camille	473, 474
Benoist, Eric	475
Benoit, Jean-Pierre	474
Bombard, Aude	544
Bouchet, Francis	473
Bouvier, Antoine	474
Boytsova, Tatiana	85, 403
Bozhkov, Ognyan	414
Brylev, Konstantin	550, 551
Cabral, Bruno	516
Chen, Vladimir	471
Childs, Bradley	102
Chotkowski, Maciej	190
Cikankowitz, Annabelle	473, 474
Clavreul, Anne	473
Couturier, Olivier	474
Czerwinski, Kenneth	102, 114, 176, 258, 272, 284
Dabli, Djamel	473
Deeganb, David	512
De Los Reyes, Massey	302
Deloye, Jean-Bernard	474
Denden, Ibtihel	141
Duchemin, Charlotte	472

Dufrêche, Jean-François	218
Epshtein, Natalya	476
Eychenne, Romain	475
Farmand, Romina	114
Fattahi, Massoud	128, 141, 159
Ferrier, Maryline	176
Forster, Paul	258, 272, 284
Gaona, Xavier	204
Gavrilov Sergey	545
Geckeis, Horst	204
Gedgagov, Eduard	464, 471
Gerber, Thomas	373
German, Konstantin	476, 491, 510, 511, 537
Ghalei, Mohammad	159
Gigue, Mireille	442
Glazkova, Marina	503
Goletsky, Nikolai	85
Gorbunova, Olga	511, 537
Grigoriev, Mikhail	503
Guertin, Arnaud	472
Guizani, Sihem	475
Haddad, Ferid	159, 472
Hagenbach, Adelheid	374, 390, 516
Hesemann, Peter	442
Hindré, François	474
Hustinx, Roland	474
Ibisch, Catherine	473
Ilin, Victor	510
Ivanov, A. A.	550
Jarvinen, Gordon	114
Johnstone, Erik	258
Kasikov Alexandr	523, 552
Keeley Peter	512
Kennedy, Brendan	475
Kerlin, William.	272, 284

Kirakosyan, Gayane	229, 491
Khijniak Tatiana	510, 511
Khlestkin V. K.	550
Kirsten, Lars	516
Kodina, Galina	476
Kolesnikov, Grigory	229, 503
Kolman, David	114
Koury, Daniel	114
Kozar', Andrey	61
Krasilnikova Anna	551
Kryzhovets, Olga	503
Čubová, Kateřina	539
Kudinov, Aleksandr	85
Lang, Ernesto S.	516
Lacoeuille, Franck	474
Lebedev, Vladimir	476
Lepareur, Nicolas	474, 475
Lumpov, Alexsander	403
Malliakas, Christos	284
Mariappan Balasekaran Samundeeswari	390
Maruk, Alesya	476
Menei, Philippe	473
Métivier, Vincent	472
Michel, Nathalie	472
Miguirditchian, Manuel	218
Mironov Yuri	550, 551
Moeyaert, Pauline	218
Moiseenko, Vasily	424
Moisy, Philippe	74, 218, 442
Murzin, Andrey	404
Myasoedov, Boris	229
Nazina, Tamara	537
Nerozin, Nikolay	476
Nway, Shwan Oo	424
Obruchnikova, Yana	229, 476, 494, 503

Ozawa, Masaki	526
Peretrukhin, Vladimir	61
Petriev, Vasily	476
Poineau, Frederic	102, 114, 141, 176, 258, 272, 284, 503
Petrova, Anna	523, 552
Prelot, Bénédicte	442
Reynolds, Emily	475
Roques, Jerome	141, 176
Rousseau, Audrey	473
Rowson, Neil	512
Safonov, Alexey	476, 494, 510, 511, 537
Sattelberger, Alfred	102, 245, 258, 272, 284
Scheinost, Andreas	204
Schoultz, Xandri	373
Shestopalov Mikhail	550, 551
Shevko, Yuriy	476
Shilyaev, Andrey	424
Shiryaev, Andrey	494
Skvortsov, Vladimir	476
Sorel, Christian	218
Tananaev, Ivan	229
Tarasov, Valery	491, 494
Terashima Atsunori	526
Terentieva, Irina	464
Thach, Ut Dong	442
Thorogood, Gordon	302
Troshkina, Irina	424
Tregubova Varvara	494, 537
Tzvetkova, Christina	414
Tétaud, Clément	473
Ustynyuk Yuriy	503
Vandenborre, Johan	128, 159
Venault, Laurent	74
Verger, Elise	474
Vlasova, Oksana	476

Wendee, Johns	344
Wolff, Mariusz	475
Yalcintas, Ezgi	204
Yokoyama, Tsugio	526
Yoshimura, Takashi	328
Yun, Alexander	464, 471
Zakharyan, Semen	464, 471
Zilberman, Boris	85
Zuboreva Kristina	551

