Technetium Binary Halides: from Molecular to Extended Structures

F. Poineau¹, B. L. Scott², P. F. Weck¹, E. V. Johnstone¹, P. M. Forster¹, K. R. Czerwinski¹, A. P. Sattelberger¹,³

¹. Department of Chemistry, University of Nevada Las Vegas, Las Vegas, USA
². Materials Physics and Applications Division, LANL, Los Alamos, USA
³. Energy Engineering and Systems Analysis Directorate, ANL, Argonne, USA

Fundamental and Applied Research on Technetium

Synthetic, coordination and computational chemistry
- Metal-metal bonded dimer, binary halides, oxides.

Chemistry relevant to the nuclear fuel cycle
- Separations and development of technetium waste forms
- Corrosion metallic technetium and alloys

Chemistry relevant to radiopharmaceuticals
- ⁹⁹Tc nitrosyl and phosphine complexes

Better understand fundamental chemistry
⇒ New applications (waste form, separations…)
Fundamental Tc chemistry

Study of Tc complexes with quadruple metal-metal bond and their transformation to binary halides

Background

I. Studies of the precursors: the quadruply bonded Tc dimers
 A - (n-Bu₄N)₂Tc₂Br₈
 B - Tc₂(O₂CCH₃)₂X₂ (X = Cl, Br)
 C - Tc₂(O₂CCH₃)₂Cl₂

II. Synthesis and characterization of Tc binary halides
 A - Technetium trichloride
 B - Technetium tribromide
 C - Binary halides as precursors of low-valent complexes

Conclusions

Background
Quadruply metal-metal bonded dimers

- Complexes which exhibit four bonds (1 σ, 2 π and 1 δ) between metal centers
- Known for group VI and VII; ~ 300 for Mo and ~100 for Re
- Five Tc quadruple bonded dimers structurally characterized:
 \((n-\text{Bu}_4\text{N})_2\text{Tc}_2\text{Cl}_8\), \(\text{Tc}_2(\text{O}_2\text{CCMe}_3)_4\text{Cl}_2\), \(\text{Tc}_2(\text{O}_2\text{CMc})_4(\text{TeO}_4)_2\), \(\text{Tc}_2(\text{O}_2\text{CCH}_3)_2\text{Cl}_4\cdot2\text{dma}\) and \(\text{K}_2\text{Tc}_2(\text{SO}_4)_4\cdot2\text{H}_2\text{O}\)
- No bromides or iodides have been structurally characterized
 \((n-\text{Bu}_4\text{N})_2\text{Tc}_2\text{Br}_8\) and \(\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{X}_2\) (X = Cl, Br) previously reported, but not well characterized

Transition metal binary halides

- \(\text{MX}_n\) (X = halide, and \(n = 1-7\))
- Two hundred are known (e.g., 13 for Re and Mo, 14 for W)
- Formed by reaction between metal and element or between molecular complexes and \(\text{H}X\) (X = Cl, Br, I) gas
- Only three technetium binary halides: \(\text{TcCl}_4\), \(\text{TcF}_6\) and \(\text{TcF}_5\)

- No binary iodides and bromides known
- No trivalent or divalent Tc binary halides reported
- No reaction involving molecular complexes and \(\text{H}X\) gas reported
GOAL

Explore the coordination and synthetic chemistry of Tc binary halides and quadruple metal-metal bonded dimers:

- Structure and bonding of Tc₂Br₈²⁻ and Tc₂(Ο₂CCH₃)₄X₂ (X = Cl, Br)
- Synthesis of binary halide from reaction Tc₂(Ο₂CCH₃)₄Cl₂ and HXg (X = Cl, Br)
- Study of structure of Tc binary halides and comparison with Re, Mo, Ru
- Binary halides as precursor for synthesis of new complexes

I. Studies of the precursors: the quadruply-bonded Tc dimers
A - \((n{-}\text{Bu}_4\text{N})_2\text{Tc}_2\text{Br}_8\)

Preparation

\[
\begin{align*}
\text{TcO}_2/\text{NH}_4\text{TcO}_4 & \quad (n{-}\text{Bu}_4\text{N})\text{TcO}_4 & \quad (n{-}\text{Bu}_4\text{N})\text{TcOCl}_4 \\
\rightarrow & \quad 12 \text{ M HCl} & \quad 12 \text{ M HCl} \\
\rightarrow & \quad T = 0 ^\circ \text{C} & \quad \text{H}_2\text{O}_2,
\end{align*}
\]

\[
\begin{align*}
(n{-}\text{Bu}_4\text{N})\text{Tc}_2\text{Br}_8 & \quad (n{-}\text{Bu}_4\text{N})\text{Tc}_2\text{Cl}_8 & \quad (n{-}\text{Bu}_4\text{N})\text{BH}_4 \\
\rightarrow & \quad \text{HBr gas} & \quad \text{HCl, acetone} \\
\rightarrow & \quad T = 30 ^\circ \text{C} & \quad \text{THF} \\
\end{align*}
\]

Single-crystal XRD

Recrystallization from acetone/ether provides single crystals → Formation of an acetone solvate: \((n{-}\text{Bu}_4\text{N})_2\text{Tc}_2\text{Br}_8\cdot 4[(\text{CH}_3)_2\text{CO}]^*

View of the solvate from the a direction

\[
\begin{align*}
\text{Tc}_2\text{Br}_8^{2-} & \text{ ion} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Tc-Tc (Å)</th>
<th>Tc-X (Å)</th>
<th>(<\text{Tc-Tc-X}> (^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((n{-}\text{Bu}_4\text{N})_2\text{Tc}_2\text{Br}_8\cdot 4[(\text{CH}_3)_2\text{CO}])</td>
<td>2.1625(9)</td>
<td>2.4734(7)</td>
<td>105.01(3)</td>
</tr>
<tr>
<td>((n{-}\text{Bu}_4\text{N})_2\text{Tc}_2\text{Cl}_8)</td>
<td>2.147(4)</td>
<td>2.320(4)</td>
<td>103.8(4)</td>
</tr>
</tbody>
</table>

- Increase of Tc-Tc separation and the \(<\text{Tc-Tc-Br}> angle
- Steric effects induced by bromide in \([\text{Tc}_2\text{Br}_8])_2\ ion

* Poineau, F. et al., *Dalton. Trans.*, 2009
UV-visible spectroscopy

\[(\text{n-Bu}_4\text{N})_2\text{M}_2\text{Br}_8 (\text{M} = \text{Tc}, \text{Re}) \text{ in CH}_2\text{Cl}_2\]

<table>
<thead>
<tr>
<th>v (cm(^{-1}))</th>
<th>transition</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,717</td>
<td>2b({2g}) → 2b({1u})</td>
<td>δ → δ*</td>
</tr>
<tr>
<td>18,647</td>
<td>4e(g) → 2b({1u})</td>
<td>π(Br) → δ*</td>
</tr>
<tr>
<td>20,518</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35,714</td>
<td>5e(_g) → 5e(_g)</td>
<td>π → π*</td>
</tr>
</tbody>
</table>

UV-visible spectrum of Tc\(_2\)Br\(_8\)^{2-} similar to Re\(_2\)Br\(_8\)^{2-}:
- Interpretation of Tc\(_2\)Br\(_8\)^{2-} electronic spectra

B - Tc\(_2\)(O\(_2\)CCH\(_3\))\(_4\)X\(_2\) (X= Cl, Br)

Reaction of (n-Bu\(_4\)N)\(_2\)Tc\(_2\)X\(_8\) in boiling acetic acid/acetic anhydride 4:1 v/v.

\((\text{n-Bu}_4\text{N})_2\text{Tc}_2\text{Cl}_8\)

Yield = 34 %
(Air stable)

\((\text{n-Bu}_4\text{N})_2\text{Tc}_2\text{Br}_8\)

Yield = 76 %
(Air stable)

Compounds insoluble in organic solvents (CH\(_2\)Cl\(_2\), acetonitrile, acetone, THF, …)
- No solution studies, impossible to re-crystallize
EXAFS spectroscopy

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Scattering</th>
<th>Structural parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C.N.</td>
<td>R (Å)</td>
</tr>
<tr>
<td>Tc₂(O₂CCH₃)₄Br₂</td>
<td>Te-Te</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Te-Br</td>
<td>0.6</td>
</tr>
<tr>
<td>Tc₂(O₂CCH₃)₄Cl₂</td>
<td>Te-Te</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Te-Cl</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Elongation of ~ 0.03 Å of Tc-Tc from (n-Bu₄N)₂Tc₂X₈ to Tc₂(O₂CCH₃)₄X₂

Tc-Tc separation depends on the position of the X terminal ligand.

• Axial ligand: d_{dz^2} orbital is shared between σ Tc-Tc and σ Tc-Cl
• Strong axial ligand (σ Tc-Cl) \Rightarrow weakening of the σ Tc-Tc bond and elongation of Tc-Tc

Single-crystal XRD

Reaction KTCO₄ in HOAc/ HCl at 220 °C under H₂

(see: W. Kerlin, talk 1.12 Tuesday 14.25)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Te-Tc</th>
<th>Te-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n-Bu₄N)₂Tc₂Cl₈</td>
<td>2.147(1)</td>
<td>2.34(2)</td>
</tr>
<tr>
<td>(n-Bu₄N)₂Tc₂Br₈</td>
<td>2.162(1)</td>
<td>2.4973(9)</td>
</tr>
<tr>
<td>Tc₂(O₂CCH₃)₄Cl₂</td>
<td>2.18(2)</td>
<td>2.43(2)</td>
</tr>
<tr>
<td>Tc₂(O₂CCH₃)₄Br₂</td>
<td>2.19(2)</td>
<td>2.63(2)</td>
</tr>
</tbody>
</table>

Elongation of ~ 0.03 Å of Tc-Tc from (n-Bu₄N)₂Tc₂X₈ to Tc₂(O₂CCH₃)₄X₂

\Rightarrow Tc-Tc separation depends on the position of the X terminal ligand.
C - Tc$_2$(O$_2$CCH$_3$)$_2$Cl$_4$

Reaction between Tc$_2$(O$_2$CCH$_3$)$_4$Cl$_2$ and HCl(g) at 100°C

Tc in a quartz boat

Placed in a tube furnace under flowing HCl

~100°C

HCl(g)

Tc$_2$(O$_2$CCH$_3$)$_4$Cl$_2$ → Tc$_2$(O$_2$CCH$_3$)$_2$Cl$_4$ (yield: 92%)

Highly soluble in CH$_2$Cl$_2$ and acetone

Single-crystal XRD

Crystal grown in a sealed tube under vacuum at 150°C

- 2 trans-acetate and 4 equatorial Cl
- Tc-Tc = 2.150 Å: quadruple bond
- Iso-structural to Re$_2$(O$_2$CCH$_3$)$_4$Cl$_4$
- Structural parameters similar to Tc$_2$Cl$_8$²⁻

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Tc-Tc (Å)</th>
<th>Tc-X (Å)</th>
<th><Tc-Tc-X (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc$_2$(O$_2$CCH$_3$)$_4$Cl$_2$</td>
<td>2.150(1)</td>
<td>2.312</td>
<td>103.0(8)</td>
</tr>
<tr>
<td>(Bu$_4$N)$_2$Tc$_2$Cl$_8$</td>
<td>2.147(4)</td>
<td>2.320(4)</td>
<td>103.8(4)</td>
</tr>
</tbody>
</table>

Decrease of Tc-Tc from Tc$_2$(O$_2$CCH$_3$)$_4$Cl$_2$ to Tc$_2$(O$_2$CCH$_3$)$_2$Cl$_4$

- Confirm influence of axial Cl ligand on Tc-Tc separation
II. Synthesis and characterization of Tc binary halides
A - Technetium Trichloride

Reaction between Tc₂(O₂CCH₃)₄Cl₂ and HCl(g) at 350°C *

- Tc₂(O₂CCH₃)₄Cl₂: green crystals
- TcCl₃: black, x-ray amorphous

EXAFS of TcCl₃ powder

2 Tc at 2.42(2) Å
5 Cl at 2.25(2), 2.40(2), 2.50(3) Å

→ Presence of the Tc₃Cl₉ unit

*Poineau, F., et al., JACS, 2010

Single-crystal XRD

Crystal grown in a sealed tube under vacuum at 450°C

Infinite layers of Tc₃Cl₉ bridged by Cl ligands (Trigonal, R-3m)

- Tc-Tc 2.444 Å
- Te-Te 3.882 Å
- Te-Cl₁ 2.237 Å
- Te-Cl₂ 2.373 Å
- Te-Cl₃ 2.373 Å
- Te-Cl₄ 2.585 Å

Tc₃Cl₉ cluster in TeCl₃

Tc₃Cl₉ in C₃v
Tc in coordination 7
Tc-Tc double bond
4 non-equivalent Cl

TcCl₃ crystallize with the “ReCl₃” structure-type
Calculations confirm TcCl₃ stability with “ReCl₃” structure-type
More stable than TcCl₃ with the RuCl₃ or MoCl₃ structures
UV-visible Spectroscopy

Spectra of TcCl₃ in 12 M HCl

TcCl₃ soluble in 12 M HCl: spectra different from [Tc₂Cl₈]³⁻ and TcCl₆²⁻
- Analogy with Re: Formation of [Re₂Cl₈]³⁻
- Need to perform electronic calculations

B - Technetium Tribromide

TcBr₃ previously synthesized from the reaction between Tc metal and Br₂ in sealed tube (Tc:Br ~ 1:3) at 350°C
- Poineau, F et al., JACS, 2009

TcBr₃: Infinite chains of face-sharing TcBr₆ octahedra

Tc(III) d⁵
O₆ coordination
- Alternation short/long d(Tc-Tc)
- deformation of octahedron
- Tc-Tc interaction: single bond

Distances (Å) in TcBr₃

<table>
<thead>
<tr>
<th></th>
<th>Tc-Br1</th>
<th>Tc-Br2</th>
<th>Tc-Br3</th>
<th>Tc-Br4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc-Br1</td>
<td>2.495</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tc-Br3</td>
<td>2.530</td>
<td>2.520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Crystallizes in the “TiI₃” structure-type: iso-structural to MoBr₃ and RuBr₃
- Calculations confirm stability of TcBr₃ with “TiI₃” structure-type
- Predict TcBr₃ with ReBr₃ structure-type to be stable (possible dimorphism)
Reaction between $\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{Cl}_2$ and HBr gas at 350 °C

- Reaction at room temperature → black powder
- Product melt/decompose at ~80 °C and converted to a black powder at 350 °C

Crystals grown in a sealed tube under vacuum at 450 °C
- Single crystal and powder XRD indicate TcBr_3 with the TiI$_3$ structure-type

- Tc_3Br_9 or/and $\text{Tc}_2(\text{O}_2\text{CCH}_3)_2\text{Br}_4$ are unstable and decompose to TcBr_3

C - Binary halides as precursors of low valent complexes
$\text{MX}_2(\text{PMe}_3)_4$ ($\text{X} = \text{Cl, Br}$) compounds are unknown in group VII

→ Metal halide reduction by Na/Hg or borohydride in presence of excess PMe$_3$:

| NbCl_5 | $\text{MoCl}_5(\text{THF})_3$ | Tc : ? | RuCl_3 |
| TaCl_5 | WCl_4 | Re : ? | (NH_4)$_2\text{OsCl}_6$ |

Reaction: TcBr_3 and PMe$_3$/NaEt$_3$BH

Technetium tribromide: reaction in THF with 30 mol xs PMe$_3$ and 1.3 eq. NaEt$_3$BH

1. Stirring 12 hours under Ar
2. Pumping to dryness
3. Extraction and crystallization from hexane

TcBr_3 PMe_3 NaEt_3 BH
A) $\text{Tc}_2\text{Br}_4(\text{PMe}_3)_4$

- First $\text{Tc}^{II}\text{Br}_4(\text{PR}_3)_4$ characterized
- Triple Tc-Tc bonded dimer: $\sigma^2\pi^4\delta^6\delta^2$
- Isomorphous to $\text{M}_2\text{Br}_4(\text{PMe}_3)_4$ ($\text{M} = \text{Re}, \text{Mo}$)

B) $\text{trans-TeBr}_2(\text{PMe}_3)_4$

- First $\text{M}^{II}\text{X}_2(\text{PMe}_3)_4$ for group VII
- Octahedral complex, D_{2d} symmetry
- Four equatorial PMe$_3$, trans-axial Br’s
- Isomorphous to $\text{MoBr}_2(\text{PMe}_3)_4$

*Poineau, F., et al., *Dalton Trans.*, 2009

Conclusions
New structural data $\text{Tc}_2\text{Br}_8^{2-}$ and $\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{X}_2$ ($\text{X} = \text{Cl}, \text{Br}$)
- Influence of X (Cl, Br) nature and position on Te-Tc separation
- Axial X ligand in $\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{Cl}_4$ → larger Te-Tc separation
- Br induces more steric congestion in $\text{Tc}_2\text{X}_8^{2-}$ than Cl ligand → Te-Tc elongation

Reaction between $\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{Cl}_2$ and HX(g) ($\text{X} = \text{Cl}, \text{Br}$)
- One novel quadruple Te-Tc bonded dimer: $\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{Cl}_4$
- Two new binary halides: TcCl_3 and TcBr_3
- For $\text{X} = \text{Cl}$, mechanism similar to Re, $\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{Cl}_4$ intermediate
- For $\text{X} = \text{Br}$, Tc_3Br_9 or $\text{Tc}_2(\text{O}_2\text{CCH}_3)_4\text{Br}_4$ unstable and decompose

Comparison with neighboring elements
- Polymorphism of Tc trihalides
 - TcBr$_3$ similar to RuBr$_3$ and MoBr$_3$, while TcCl$_3$ is similar to ReCl$_3$

Structure and bonding in TcX$_3$
- For $\text{X} = \text{Cl}$, Te-Tc = 2.444 Å → double bond
 - UV-visible in HCl(aq): Possible formation of $[\text{Tc}_3\text{Cl}_{12}]^{3-}$
- For $\text{X} = \text{Br}$, Te-Tc = 2.828 Å → single bond
 - UV-visible in HBr(aq): Oxidation to TcBr_6^{2-}

Use of binary halide as precursors
- Reaction of TcBr$_3$ with PMe$_3$/NaEt$_3$BH: 2 new complexes
 - trans-TcBr$_2$(PMe$_3$)$_4$ and Tc$_2$Br$_4$(PMe$_3$)$_4$
Future Work

Continue to investigate molecular complexes for binary halides

- Tc-iodide: TcI₃ by reaction between Tc₂(OCCH₃)₄Cl₂ under HI gas
- Tc-bromide: Reaction between TcCl₃ with HBr gas
- Tc-chloride: Investigation of Tc dichloride

E. Johnstone, talk 1.13
Tuesday 14.50.

New reactions using Tc binary halides as precursors

Conversion of TcCl₃ to molecular Tc₃Cl₉L₃ (e.g., L = PR₃) complexes

Acknowledgments

Mr. Tom O’Dou

Radiation protection and Health Physics

Funding for this research was provided by a SISGR Grant from the U.S. Department of Energy under Contract No. 47824B.

Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Questions

Radiochemistry Program at the University of Nevada Las Vegas

For more information, please visit http://Radchem.nevada.edu