

Technetium Binary Halides: from Molecular to Extended Structures

<u>F. Poineau¹</u>, B. L. Scott², P. F. Weck¹, E. V. Johnstone¹, P. M. Forster¹, K. R. Czerwinski¹, A. P. Sattelberger^{1,3}

- 1. Department of Chemistry, University of Nevada Las Vegas, Las Vegas, USA
- 2. Materials Physics and Applications Division, LANL, Los Alamos, USA
- 3. Energy Engineering and Systems Analysis Directorate, ANL, Argonne, USA

Technetium Chemistry at UNLV <u>Fundamental</u> and <u>Applied</u> Research on Technetium

Synthetic, coordination and computational chemistry
- Metal-metal bonded dimer, binary halides, oxides.

Tc₂CL(PMe₂),

Chemistry relevant to the nuclear fuel cycle
-Separations and development of technetium waste forms
-Corrosion metallic technetium and alloys

U/Tc separation

Chemistry relevant to radiopharmaceuticals
- 99Tc nitrosyl and phosphine complexes

Better understand fundamental chemistry

→ New applications (waste form, separations...)

Tc(NO)(AHA),(H,O)+

Fundamental Tc chemistry

Study of Tc complexes with quadruple metal-metal bond and their transformation to binary halides

Background

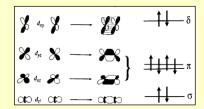
I. Studies of the precursors: the quadruply bonded Tc dimers

$$\begin{array}{l} A - (n\text{-Bu}_4N)_2Tc_2Br_8 \\ B - Tc_2(O_2CCH_3)_4X_2 \\ C - Tc_2(O_2CCH_3)_2CI_4 \end{array} (X = Cl, Br) \\ \end{array}$$

II. Synthesis and characterization of Tc binary halides

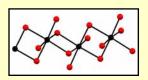
- A Technetium trichloride
- B Technetium tribromide
- C Binary halides as precursors of low-valent complexes


Conclusions


Background

Quadruply metal-metal bonded dimers

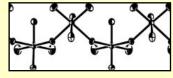
• Complexes which exhibit four bonds (1 σ , 2 π and 1 δ) between metal centers


Quadruple bond identified in 1964 in Re₂Cl₈²-

AOs involved in quadruple bond

- Known for group VI and VII; ~ 300 for Mo and ~100 for Re
- Five Tc quadruple bonded dimers structurally characterized: $(n\text{-Bu}_4\text{N})_2\text{Tc}_2\text{Cl}_8$, $\text{Tc}_2(\text{O}_2\text{CCMe}_3)_4\text{Cl}_2$, $\text{Tc}_2(\text{O}_2\text{CMe})_4(\text{TcO}_4)_2$, $\text{Tc}_2(\text{O}_2\text{CCH}_3)_2\text{Cl}_4$ •2dma and $\text{K}_2\text{Tc}_2(\text{SO}_4)_4$ •2H $_2\text{O}$
- No bromides or iodides have been structurally characterized (n-Bu₄N)₂Tc₂Br₈ and Tc₂(O₂CCH₃)₄X₂ (X = Cl, Br) previously reported, but not well characterized

Transition metal binary halides


- MX_n (X = halide, and n = 1-7)
- Two hundred are known (e.g., 13 for Re and Mo, 14 for W)
- \cdot Formed by reaction between metal and element or between molecular complexes and HX (X = Cl, Br, I) gas
- · Only three technetium binary halides: TcCl₄, TcF₆ and TcF₅

 $TcCl_4$: in 1957 $Tc + xs Cl_2 \rightarrow TcCl_4$

 TcF_6 : in 1961

TcF₅: in 1963

 $Tc + xs F_2 \rightarrow TcF_6$

 $Tc + xs N_2/F_2 \rightarrow TcF_5$

- · No binary iodides and bromides known
- · No trivalent or divalent Tc binary halides reported
- · No reaction involving molecular complexes and HX gas reported

GOAL

Explore the coordination and synthetic chemistry of Tc binary halides and quadruple metal-metal bonded dimers:

- Structure and bonding of $Tc_2Br_8^{2-}$ and $Tc_2(O_2CCH_3)_4X_2$ (X = Cl, Br)
- Synthesis of binary halide from reaction Tc₂(O₂CCH₃)₄Cl₂ and HXg (X= Cl, Br)
- Study of structure of Tc binary halides and comparison with Re, Mo, Ru
- Binary halides as precursor for synthesis of new complexes

I. Studies of the precursors: the quadruply-bonded Tc dimers

$A - (n-Bu_4N)_2Tc_2Br_8$

Preparation

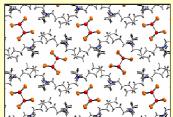
 $T = 100 \text{ °C}, H_2O_2$ $\longrightarrow (n-Bu_4N)OH$

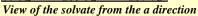
12 M HCl T = 0 °C

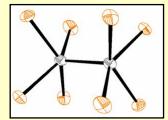
TcO₂/NH₄TcO₄

(n-Bu₄N)TcO₄

(n-Bu₄N)TcOCl₄

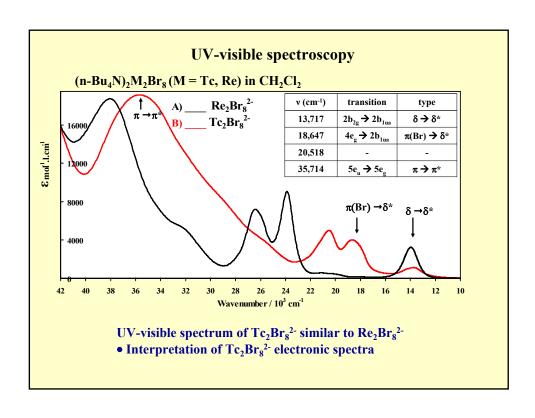

(n-Bu₄N)BH₄ THF & HCl, acetone

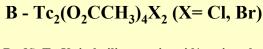

 $(n-Bu_4N)_2Tc_2Br_8$


Single-crystal XRD

Recrystallization from acetone/ether provides single crystals

→ Formation of an acetone solvate: (n-Bu₄N)₂Tc₂Br₈. 4[(CH₃)₂CO]*




 $Tc_2Br_8^{2-}$ ion

Compounds	Tc-Tc (Å)	Tc-X (Å)	<tc-tc-x> (°)</tc-tc-x>
(n-Bu ₄ N) ₂ Tc ₂ Br ₈ ·4[(CH ₃) ₂ CO]	2.1625(9)	2.4734(7)	105.01(3)
(n-Bu ₄ N) ₂ Tc ₂ Cl ₈	2.147(4)	2.320(4)	103.8(4)

- · Increase of Tc-Tc separation and the <Tc-Tc-Br> angle
- \cdot Steric effects induced by bromide in $[Tc_2Br_8]_{2-}$ ion

* Poineau, F. et al., Dalton. Trans. 2009

Reaction of (n-Bu₄N)₂Tc₂X₈ in boiling acetic acid/acetic anhydride 4:1 v/v.

Schlenk line techniques

 $(n-Bu_4N)_2Tc_2Cl$

 $(n-Bu_4N)_2Tc_2Br_8$

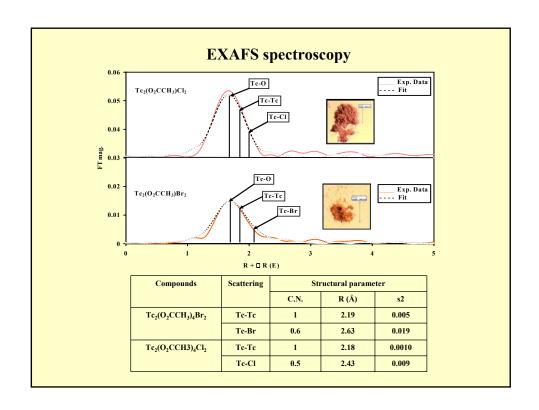
 $t = 20 \min$

Tc Cl

 $t = 3 \min$

 $Tc_2(O_2CCH_3)_4Cl_2$

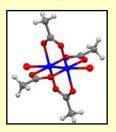
Yield = 76 %


(Air stable)

Yield = 34 %

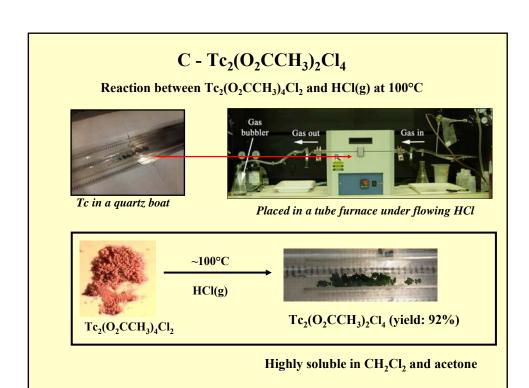
(Air stable)

 $Tc_2(O_2CCH_3)_4Br_2$

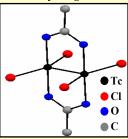

Compounds insoluble in organic solvents (CH₂Cl₂, acetonitrile, acetone, THF, ...) · No solution studies, impossible to re-crystallize

Single-crystal XRD

Reaction KTcO4 in HOAc/ HCl at 220 °C under H2


(see: W. Kerlin, talk 1.12 Tuesday 14.25)

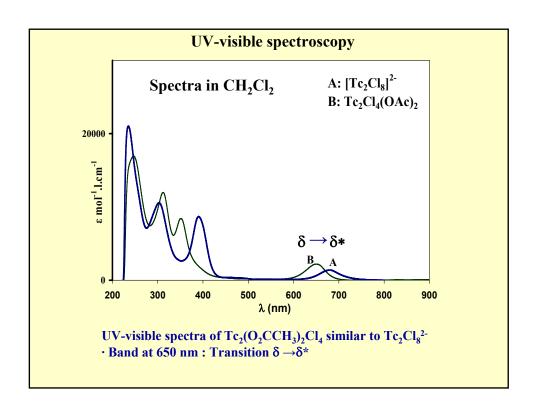
Compounds	Тс-Тс	Tc-X
(n-Bu ₄ N) ₂ Tc ₂ Cl ₈	2.147(1)	2.34(2)
(n-Bu ₄ N) ₂ Tc ₂ Br ₈	2.162(1)	2.4973(9)
Tc ₂ (O ₂ CCH ₃) ₄ Cl ₂	2.18(2)	2.43(2)
Tc ₂ (O ₂ CCH ₃) ₄ Br ₂	2.19(2)	2.63(2)


Elongation of ~ 0.03 Å of Tc-Tc from $(n-Bu_4N)_2Tc_2X_8$ to $Tc_2(O_2CCH_3)_4X_2$ \rightarrow Tc-Tc separation depends of the position of the X terminal ligand.

- \bullet Axial ligand: d_{z2} orbital is shared between σ Tc-Tc and σ Tc-Cl
- Strong axial ligand (σ Tc-Cl) \Rightarrow weakening of the σ Tc-Tc bond and elongation of Tc-Tc

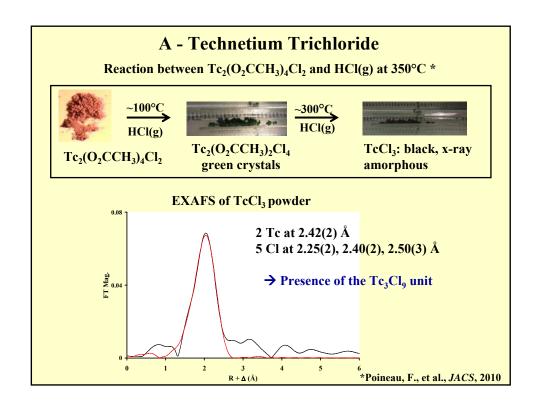
Single-crystal XRD

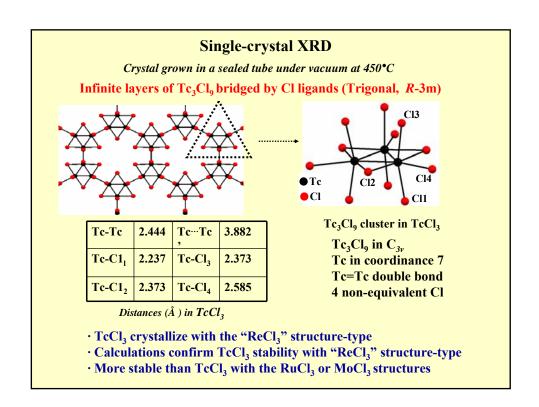
Crystal grown in a sealed tube under vacuum at 150°C

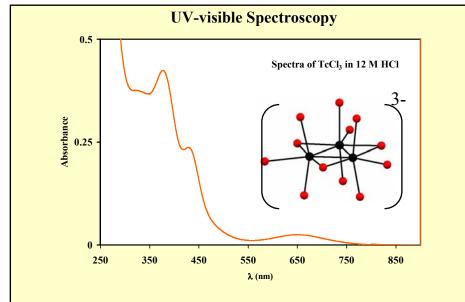


- · 2 trans-acetate and 4 equatorial Cl
- · Tc-Tc = 2.150 Å: quadruple bond
- · Iso-structural to Re₂(O₂CCH₃)₂Cl₄
- · Structural parameters similar to Tc₂Cl₈²-

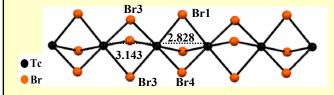
Compounds	Tc-Tc (Å)	Tc-X (Å)	<tc-tc-x (°)<="" th=""></tc-tc-x>
Tc ₂ (O ₂ CCH ₃) ₂ Cl ₄	2.150(1)	2.312	103.0(8)
(Bu ₄ N) ₂ Tc ₂ Cl ₈	2.147(4)	2.320(4)	103.8(4)


Decrease of Tc-Tc from Tc₂(O₂CCH₃)₄Cl₂ to Tc₂(O₂CCH₃)₂Cl₄


· Confirm influence of axial Cl ligand on Tc-Tc separation



II. Synthesis and characterization of Tc binary halides


TcCl₃ soluble in 12 M HCl: spectra different from [Tc₂Cl₈]ⁿ- and TcCl₆²-

- · Analogy with Re: Formation of [Re₃Cl₁₂]³-
- · Need to perform electronic calculations

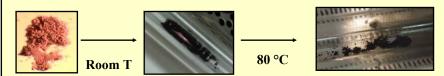
B - Technetium Tribromide

TcBr $_3$ previously synthesized from the reaction between Tc metal and Br $_2$ in sealed tube (Tc:Br \sim 1:3) at 350°C* *Poineau, F et al., JACS, 2009

TcBr₃: Infinite chains of face-sharing TcBr₆ octahedra

TcBr₃: air stable TcBr₆²⁻ in HBr(aq)

Tc-Br1	2.495	Tc-Br2	2.487
Tc-Br3	2.530	Tc-Br4	2.520


Distances (Å) in TcBr₃

Tc(III) d^4 O_h coordination

Alternation short/long d(Tc-Tc)

- · deformation of octahedron
- · Tc-Tc interaction: single bond
- · Crystallizes in the "TiI3" structure-type: iso-structural to MoBr3 and RuBr3
- · Calculations confirm stability of TcBr₃ with "TiI₃" structure-type
- · Predict TcBr₃ with ReBr₃ structure-type to be stable (possible dimorphism)

Reaction between Tc₂(O₂CCH₃)₄Cl₂ and HBr gas at 350 °C

- · Reaction at room temperature > black powder
- . Product melt/decompose at ~80 °C and converted to a black powder at 350 °C

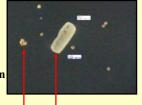
Crystals grown in a sealed tube under vacuum at 450 °C

- · Single crystal and powder XRD indicate TcBr₃ with the TiI₃ structure-type
- · Tc₃Br₉ or/and Tc₂(O₂CCH₃)₂Br₄ are unstable and decompose to TcBr₃

C - Binary halides as precursors of low valent complexes

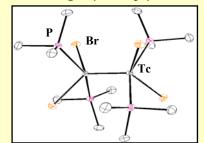
 $MX_2(PMe_3)_4$ (X = Cl, Br) compounds are unknown in group VII

→ Metal halide reduction by Na/Hg or borohydride in presence of excess PMe₃:

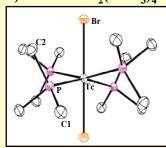

NbCl ₅	MoCl ₃ (THF) ₃	Tc:?	RuCl ₃
TaCl ₅	WCl ₄	Re : ?	(NH ₄) ₂ OsCl ₆

Reaction: TcBr₃ and PMe₃/NaEt₃BH

Technetium tribromide: reaction in THF with 30 mol xs PMe3 and 1.3 eq. NaEt3BH


- 1. Stirring 12 hours under Ar
- 2. Pumping to dryness
- 3. Extraction and crystallization from hexane

TcBr₃


 $TcBr_2(PMe_3)_4$ $Tc_2Br_4(PMe_3)_4$

A) Tc₂Br₄(PMe₃)₄

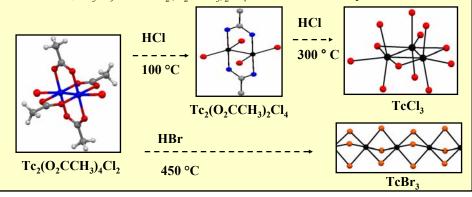
- · First Tc2 IIBr4(PR3)4 characterized*
- · Triple Tc-Tc bonded dimer: $\sigma^2 \pi^4 \delta^2 \delta^{*2}$
- · Isomorphous to $M_2Br_4(PMe_3)_4$ (M = Re, Mo)

B) trans-TcBr₂(PMe₃)₄

- · First M^{II}X₂(PMe₃)₄ for group VII
- · Octahedral complex, D_{2d} symmetry · Four equatorial PMe₃, trans-axial Br's
- · Isomorphous to MoBr₂(PMe₃)₄

*Poineau, F., et al., Dalton Trans., 2009

Conclusions



→ New structural data $Tc_2Br_8^{2-}$ and $Tc_2(O_2CCH_3)_4X_2$ (X = Cl, Br)

- · Influence of X (Cl, Br) nature and position on Tc-Tc separation
- · Axial X ligand in $Tc_2(O_2CCH_3)_2Cl_4 \rightarrow larger Tc$ -Tc separation
- · Br induces more steric congestion in $Tc_2X_8^{2-}$ than Cl ligand \rightarrow Tc-Tc elongation

\rightarrow Reaction between $Tc_2(O_2CCH_3)_4Cl_2$ and HX(g) (X= Cl, Br)

- · One novel quadruple Tc-Tc bonded dimer: Tc₂(O₂CCH₃)₂Cl₄
- · Two new binary halides: TcCl₃ and TcBr₃
- · For X = Cl, mechanism similar to Re, $Tc_2(O_2CCH_3)_2Cl_4$ intermediate
- · For X = Br, Tc_3Br_9 or/and $Tc_2(O_2CCH_3)_2Br_4$ unstable and decompose

→ Comparison with neighboring elements

· Polymorphism of Tc trihalides

TcBr₃ similar to RuBr₃ and MoBr₃, while TcCl₃ is similar to ReCl₃

\rightarrow Structure and bonding in TcX₃

- · For X = Cl, Tc-Tc = 2.444 Å \rightarrow double bond UV-visible in HCl(aq): Possible formation of $[Tc_3Cl_{12}]^{3-}$
- · For X = Br, Tc-Tc = 2.828 Å \rightarrow single bond UV-visible in HBr(aq): Oxidation to TcBr₆²-

→ Use of binary halide as precursors

Reaction of TcBr $_3$ with PMe $_3$ /NaEt $_3$ BH: 2 new complexes \cdot trans-TcBr $_2$ (PMe $_3$) $_4$ and Tc $_2$ Br $_4$ (PMe $_3$) $_4$

Future Work

Continue to investigate molecular complexes for binary halides

Tc-iodide: TcI₃ by reaction between Tc₂(OCCH₃)₄Cl₂ under HI gas

Tc-bromide: Reaction between TcCl₃ with HBr gas

Tc-chloride: Investigation of Tc dichloride

E. Johnstone, talk 1.13

Tuesday 14.50.

New reactions using Tc binary halides as precursors

Conversion of TcCl₃ to molecular Tc₃Cl₉L₃ (e.g., $L = PR_3$) complexes

Acknowledgments

Mr. Tom O'Dou Radiation protection and Health Physics

Funding for this research was provided by a SISGR Grant from the U.S. Department of Energy under Contract No. 47824B.

Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Questions

Radiochemistry Program at the University of Nevada Las Vegas

For more information, please visit http://Radchem.nevada.edu

