

The seven-chamber electrodialyzator and technology of electrodialysis clearings, concentrating and obtaining of rhenium containing products (rhenium acid, perrhenate salts) from industrial rhenium containing solutions are developed.

The device design enables to use the cheap anode materials (graphite, alloys on the basis of lead, etc.), excludes pollution of rhenium acid by anode material that is the important condition for the obtaining solutions of high purity.

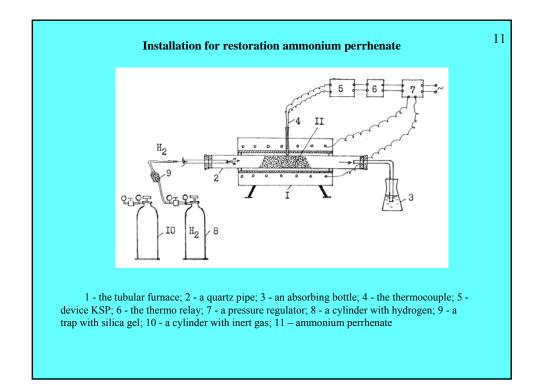
Current density, A/m ²	Re concentration in chambers, g/L		HReO ₄ concentration in concentration	Rhenium current efficiency, %	Specific electric power consumption kWh/kg Re
	First barrier Chamber	second barrier chamber	chamber, g/L		
50	0.165	0.833	43.60	68.6	7.0
100	0.330	1.676	86.97	68.4	7.2
150	0.502	2.450	134.06	68.8	7.6
200	0.530	3.325	177.69	69.1	8.0
250	0.837	4.032	213.86	67.9	9.0
300	1.025	5.100	273.15	70.1	10.1
400	1.300	6.550	337.48	67.7	14.4

	5	olution (experim	ent time is 60 minu		
Current density, A/m ²	Solution temperature, °C	Rheniu	Rhenium current efficiency, %		
		first barrier chamber	second barrier chamber	Concentration chamber	enterency, /o
250	30	0.020	0.053	114.0	6.3
250	40	0.020	0.056	169.0	9.4
250	50	0.022	0.058	389.0	22.4
350	30	0.029	0.084	415.0	16.8
350	40	0.029	0.084	468.0	18.8
350	50	0.029	0.084	630.0	25.2
400	30	0.035	0.104	428.0	15.0
400	40	0.036	0.111	477.0	16.8
400	50	0.037	0.112	640.0	22.4

Effect of flow rate of initial solution of ammonia perrhenate on the rate of rhenium transport to concentrating chamber (current density is 300 A/m², temperature of solutions 50 ° C, reaction time of experiment is 60 minutes)

Flow rate of initial solution in deminerali- zation chamber volume of chamber/min e	HReO ₄ Re concentration concentration in chamber, g/L Re concentration		Rate of Re transport to chamber of concentrating, g/m ² .h	Rhenium current efficiency, %	Specific electric power consumption, kWh/kg Re	
0.20	272.1	0.004	2568	70.0	10.10	
0.37	273.4 276.2 278.7	0.004 0.004 0.004 0.007	2575 2580 2586 2595	70.3 70.5 71.0 71.3	9.90 9.75 9.40 9.20	
0.48						
0.67						
0.83	280.4					
0.98 283.7		0.008	2600	71.7	9.00	
1.10	284.4	0.010	0.010 2605	71.9	8.80	
1.20	288.1	0.016	2610	72.2	8.70	

It was identified that the optimum conditions of the process of rhenium acid concentration by electrodialysis of ammonia and potassium perrhenate solutions are the following: 300 A/m² current density, 50°C solution temperature in electrodialyzer's chambers, 35-40 g/L rhenium concentration in initial solution, 0.67-0.83 volume of chamber/min flow rate of initial solution in a demineralization chamber. Concentration of rhenium acid in these conditions is 300 g/L and higher. However, higher concentration of produced rhenium acid is inadvisable because the selectivity and mechanical strength of ionite membranes are decreased.


The transformation of rhenium in rhenium acid from the initial quantity rhenium was 99 %. The basic rhenium losses (0,2 %) with anode and cathodes chambers waste solutions occur. The outcome on a current of rhenium has made 60 %, the expense of the electric power on 1 kg Re - 6 KVt/h.

From obtained rhenium acid by an ammonia solution neutralization the ammonium perrhenate salt besieges, weights, containing. %: Re - 69,2; K <1·10⁻³; Na - 1·10⁻⁴; S - 2·10⁻³; P <1·10⁻⁴; Si <1·10⁻⁴; Mg <1·10⁻⁴; Mn <1·10⁻⁴; Al <1·10⁻⁴; Fe <5·10⁻⁴; Ca <1·10⁻³; Mo <5·10⁻⁴; Cu <5·10⁻⁵ and corresponding ammonium perrhenate of mark AP-0.

For higher purity metal rhenium obtaining the initial ammonium perrhenate of mark AP-0 was cleared from present impurity industrially on industrial installation with use of specially cleared water. Produced rhenium acid contained, weight %: Re - 27,5; K - $4 \cdot 10^{-5}$; Na - $8 \cdot 10^{-5}$; Fe - $2 \cdot 10^{-4}$; SO₄²⁻-0,01; Cl⁻-0,06; mechanical impurities were not determined.

The ammonium perthenate besieged from this acid by ammonia contained, mass. %: Re-69,2; K <2 \cdot 10⁻⁴; Na - 6 \cdot 10⁻⁵; S <2 \cdot 10⁻⁴; P <1 \cdot 10⁻³; Si <4 \cdot 10⁻⁵; Mg - 8 \cdot 10⁻⁶; Mn - 4 \cdot 10⁻⁶; Al - 1 \cdot 10⁻⁴; Fe - 5 \cdot 10⁻⁶; Ca - 3 \cdot 10⁻⁴; Mo - 1 \cdot 10⁻⁴; Ni <1 \cdot 10⁻⁴; Cu <5 \cdot 10⁻⁵. The maintenance in ammonium perthenate of such impurity as potassium, sodium, magnesium, manganese, iron were on 1-2 order lower than in initial salt.

10

The naintenance,	Tests metal rhenium						
weights. %	1	2	3	4	5	6	
K	9.10-3	<1.10-3	<1.10-3	<1.10-3	<1.10-3	<1.10-3	
Na	2,5.10-3	3.10-4	3.10-4	7.10-4	1.10-3	3.10-4	
Ca	5.10-3	<1.10-3	<1.10-3	<1.10-3	<1.10-3	<1.10-3	
Si	4,2.10-4	3,2.10-4	2,2.10-4	1,8.10-4	2,8.10-4	2,4.10-4	
Al	4,3.10-4	1,8.10-4	1,3.10-4	1.10-4	5.10-5	8.10-5	
Fe	6.10-5	8.10-5	5.10-5	5.10-5	6.10-5	5.10-5	
Mg	7.10-4	1,8.10-4	1.10-4	1,5.10-4	1,7.10-4	2.10-4	
Ni	1.10-4	1.10-4	1.10-4	1.10-4	1.10-4	1.10-4	
Мо	<1.10-4	<1.10-4	<1.10-4	<1.10-4	<1.10-4	<1.10-4	
Cu	6.10-5	2.10-5	2.10-5	2.10-5	3.10-5	1.10-5	
Re не менее	99,9806	99,9967	99,9970	99,9969	99,9962	99,9969	

CONCLUSION

The optimum conditions of electrodialysis rhenium acid concentration process conducting from the ammonium perrhenate and potassium solutions are: the density of a current - 300 A/m^2 , temperature of solutions in electrodialyzators chambers - $50 \text{ }^{\circ}\text{C}$, rhenium concentration in an initial solution - $35-40 \text{ g/dm}^3$, speed of an initial solution channel in the desalting chamber - 0.67 - 0.83 volumes/minutes. Under these conditions the 300 g/dm^3 and above of rhenium acid concentration is reached. However, the more concentrated rhenium acid is inexpedient, as selectivity and mechanical ionic membranes durability thus decreases.

The transformation of rhenium in rhenium acid from the initial quantity rhenium was 99 %. The basic rhenium losses (0,2 %) with anode and cathodes chambers waste solutions occur. The outcome on a current of rhenium has made 60 %, the expense of the electric power on 1 kg Re - 6κ Vt/h.

From obtained rhenium acid by an ammonia solution neutralization the ammonium perrhenate salt besieges corresponding ammonium perrhenate of mark AP-0. Metal rhenium produced from marketable AP-0 grade ammonium perrhenate by method of high-temperature reduction with gaseous hydrogen at 800-900°C contained no more than 99,981 % of the basic metal.

Initial ammonium perrhenate purification was carried out on industrial electrodialysis apparatus with using specially purified water for increase of metal rhenium purity in industrial conditions. Produced rhenium acid contained, weight %: Re - 27,5; K - $4 \cdot 10^{-5}$; Na - $8 \cdot 10^{-5}$; Fe - $2 \cdot 10^{-4}$; SO₄²⁻0,01; Cl⁻0,06; mechanical impurities were not determined.

Ammonium perrhenate, deposited from this acid by ammonia salt contained, weight %: Re-69,2; K <2·10⁻⁴; Na - 6·10⁻⁵; S <2·10⁻⁴; P <1·10⁻³; Si <4·10⁻⁵; Mg - 8·10⁻⁶; Mn - 4·10⁻⁶; Al - 1·10⁻⁴; Fe - 5·10⁻⁶; Ca - 3·10⁻⁴; Mo - 1·10⁻⁴; Ni <1·10⁻⁴; Cu <5·10⁻⁵, that on 1-2 degree (order) lower than content of such impurities as K, Na, Mg, Mn, Fe in initial ammonium perrhenate.

Metal rhenium powder, produced by high-temperature reduction with gaseous hydrogen of ammonium perrhenate, preliminary purified by electrodialysis method, exceeds on degree (order) by basic metal content the rhenium, obtained by reduction of AP-0 grade ammonium perrhenate.